Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study of Interaction of Some Heavy Metals with Carbohydrates in Aqueous Solution
Corresponding Author(s) : Said Ghalem
Asian Journal of Chemistry,
Vol. 28 No. 6 (2016): Vol 28 Issue 6
Abstract
HOMO and LUMO energies and densities of frontier orbital of M(II) halides (M = Hg, Cu, Zn, Sn) and a set of the aqueous solution of carbohydrates have been evaluated. The metal-ligand interaction between metal halides and carbohydrates has been studied on the basis of energies and densities of frontier orbitals. The results of HOMO density of frontier orbitals indicate that among carbohydrates, the sequence of donor ability is in the order, maltose > fucose > ribose. In case of transition metal the acceptor strength is in order of copper > tin > mercury > zinc. The magnitude of interaction has been evaluated by lowering of energy and shift in charge, by solving the equation DE = - (cA – cB)2/4(hA + hB) and DN = (cA – cB)/2(hA + hB), respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Mendu, J. Pragathi, B. Anupama and C.G. Kumari, E-J. Chem., 9, 2145 (2012); doi:10.1155/2012/839789.
- D. Steinborn and H. Junicke, Chem. Rev., 100, 4283 (2000); doi:10.1021/cr9903050.
- P.A.M. Williams, S.B. Etcheverry, D.A. Barrio and E.J. Baran, Carbohydr. Res., 341, 717 (2006); doi:10.1016/j.carres.2006.01.009.
- N.M. Taher and A.S. Al Jabab, Dent. Mater., 19, 54 (2003); doi:10.1016/S0109-5641(02)00008-8.
- L. Reclaru, R. Lerf, P.Y. Eschler, A. Blatter and J.M. Meyer, Biomaterials, 23, 3479 (2002); doi:10.1016/S0142-9612(02)00055-8.
- N. Horasawa, S. Takahashi and M. Marek, Dent. Mater., 15, 318 (1999); doi:10.1016/S0109-5641(99)00051-2.
- B. Grosgogeat, L. Reclaru, M. Lissac and F. Dalard, Biomaterials, 20, 933 (1999); doi:10.1016/S0142-9612(98)00248-8.
- R. Venugopalan and L.C. Lucas, Dent. Mater., 14, 165 (1998); doi:10.1016/S0109-5641(98)00024-4.
- L. Reclaru and J.M. Meyer, J. Dent., 22, 159 (1994); doi:10.1016/0300-5712(94)90200-3.
- R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids; Wiley-VCH: Weinheim, Germany (1997).
- R.G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963); doi:10.1021/ja00905a001.
- R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys., 68, 3801 (1978); doi:10.1063/1.436185.
- J.P. Perdew, R.G. Parr, M. Levy and J.L. Balduz, Phys. Rev. Lett., 49, 1691 (1982); doi:10.1103/PhysRevLett.49.1691.
- S. Pal, R. Roy and A.K. Chandra, J. Phys. Chem., 98, 2314 (1994); doi:10.1021/j100060a018.
- S.K. Ghosh and M. Berkowitz, J. Chem. Phys., 83, 2976 (1985); doi:10.1063/1.449846.
- W. Yang and W.J. Mortier, J. Am. Chem. Soc., 108, 5708 (1986); doi:10.1021/ja00279a008.
- W. Yang and R.G. Parr, Proc. Natl. Acad. Sci. USA, 82, 6723 (1985); doi:10.1073/pnas.82.20.6723.
- D. Singh, S. Ahmad and P.P. Singh, J. Mol. Struct. THEOCHEM., 905, 13 (2009): doi:10.1016/j.theochem.2009.03.002.
- P.P. Singh, P. Kumar and A.K. Srivastava, Org. Chem. An Indian J., 6, 190 (2010).
- H. Chermette, J. Comput. Chem., 20, 129 (1999); doi:10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A.
- R.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); doi:10.1021/ja00364a005.
- P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); doi:10.1021/cr990029p.
- J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, edn 2, Gaussian Inc., Pittsburg (1996).
- L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York (1960).
- P. Senet, Chem. Phys. Lett., 275, 527 (1997); doi:10.1016/S0009-2614(97)00799-9.
- M. Abreu-Quijano, M. Palomar-Pardavé, A. Cuán, M. Romero-Romo, G. Negrón-Silva, R. Álvarez-Bustamante, A. Ramírez-López and H. Herrera-Hernández, Int. J. Electrochem. Sci., 6, 3729 (2011).
- L.R. Domingo, E. Chamorro and P. Pe’rez, J. Org. Chem., 73, 4615 (2008); doi:10.1021/jo800572a.
- P. Jaramillo, L.R. Domingo, E. Chamorro and P. Perez, J. Mol. Struct. THEOCHEM., 865, 68 (2008); doi:10.1016/j.theochem.2008.06.022.
- H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); doi:10.1002/jcc.540030212.
- H.B. Schlegel, in ed.: D.R. Yarkony, Geometry Optimization on Potential Energy Surface, In: Modern Electronic Structure Theory, World Scientific, Singapore (1994).
- P. Perez, L.R. Domingo, M. Duque-Noren and E. Chamorro, J. Mol. Struct. THEOCHEM., 895, 86 (2009); doi:10.1016/j.theochem.2008.10.014.
- J.L. Gazquez, in ed.: K.D. Sen, Chemical Hardness Structure and Bonding, In: Chemical Hardness Structure and Bonding, Spinger-Verlag: Berlin, vol. 80, p. 27 (1993).
- M.J. Frisch, G.W. Trucks and H.B.Schlegel, Gaussian 03; Revision D.01. Gaussian, Inc.: Wallingford (2004).
- J.K. Labanowski and J.W. Andzelm, Density Functional Methods in Chemistry; Springer Verlag: New York, pp 49-60 (1991).
- A.D. Becke, J. Chem. Phys., 98, 1372 (1993); doi:10.1063/1.464304.
- A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); doi:10.1063/1.445134.
- A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); doi:10.1063/1.449486.
- K. Fukui, T. Yonezawa and H. Shingu, J. Chem. Phys., 20, 722 (1952); doi:10.1063/1.1700523.
- L.H. Mendoza-Huizar and C.H. Rios-Reyes, J. Mex. Chem. Soc., 55, 142 (2011).
- A.Y. Musa, A.H. Kadhum, A.B. Mohamad, A.A.B. Rahoma and H. Mesmari, J. Mol. Struct., 969, 233 (2010); doi:10.1016/j.molstruc.2010.02.051.
- G. Gece and S. Bilgic, Corros. Sci., 51, 1876 (2009); doi:10.1016/j.corsci.2009.04.003.
- I. Fleming, Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: New York (1976).
- E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); doi:10.1016/S0065-3276(08)60236-1.
- F.J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); doi:10.1007/s002149900013.
- R.K. Singh, K.V. Suresh and D.S. Prabhu, Int. J. Chem. Technol. Res., 3, 1571 (2011).
References
P. Mendu, J. Pragathi, B. Anupama and C.G. Kumari, E-J. Chem., 9, 2145 (2012); doi:10.1155/2012/839789.
D. Steinborn and H. Junicke, Chem. Rev., 100, 4283 (2000); doi:10.1021/cr9903050.
P.A.M. Williams, S.B. Etcheverry, D.A. Barrio and E.J. Baran, Carbohydr. Res., 341, 717 (2006); doi:10.1016/j.carres.2006.01.009.
N.M. Taher and A.S. Al Jabab, Dent. Mater., 19, 54 (2003); doi:10.1016/S0109-5641(02)00008-8.
L. Reclaru, R. Lerf, P.Y. Eschler, A. Blatter and J.M. Meyer, Biomaterials, 23, 3479 (2002); doi:10.1016/S0142-9612(02)00055-8.
N. Horasawa, S. Takahashi and M. Marek, Dent. Mater., 15, 318 (1999); doi:10.1016/S0109-5641(99)00051-2.
B. Grosgogeat, L. Reclaru, M. Lissac and F. Dalard, Biomaterials, 20, 933 (1999); doi:10.1016/S0142-9612(98)00248-8.
R. Venugopalan and L.C. Lucas, Dent. Mater., 14, 165 (1998); doi:10.1016/S0109-5641(98)00024-4.
L. Reclaru and J.M. Meyer, J. Dent., 22, 159 (1994); doi:10.1016/0300-5712(94)90200-3.
R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids; Wiley-VCH: Weinheim, Germany (1997).
R.G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963); doi:10.1021/ja00905a001.
R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys., 68, 3801 (1978); doi:10.1063/1.436185.
J.P. Perdew, R.G. Parr, M. Levy and J.L. Balduz, Phys. Rev. Lett., 49, 1691 (1982); doi:10.1103/PhysRevLett.49.1691.
S. Pal, R. Roy and A.K. Chandra, J. Phys. Chem., 98, 2314 (1994); doi:10.1021/j100060a018.
S.K. Ghosh and M. Berkowitz, J. Chem. Phys., 83, 2976 (1985); doi:10.1063/1.449846.
W. Yang and W.J. Mortier, J. Am. Chem. Soc., 108, 5708 (1986); doi:10.1021/ja00279a008.
W. Yang and R.G. Parr, Proc. Natl. Acad. Sci. USA, 82, 6723 (1985); doi:10.1073/pnas.82.20.6723.
D. Singh, S. Ahmad and P.P. Singh, J. Mol. Struct. THEOCHEM., 905, 13 (2009): doi:10.1016/j.theochem.2009.03.002.
P.P. Singh, P. Kumar and A.K. Srivastava, Org. Chem. An Indian J., 6, 190 (2010).
H. Chermette, J. Comput. Chem., 20, 129 (1999); doi:10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A.
R.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); doi:10.1021/ja00364a005.
P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); doi:10.1021/cr990029p.
J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, edn 2, Gaussian Inc., Pittsburg (1996).
L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York (1960).
P. Senet, Chem. Phys. Lett., 275, 527 (1997); doi:10.1016/S0009-2614(97)00799-9.
M. Abreu-Quijano, M. Palomar-Pardavé, A. Cuán, M. Romero-Romo, G. Negrón-Silva, R. Álvarez-Bustamante, A. Ramírez-López and H. Herrera-Hernández, Int. J. Electrochem. Sci., 6, 3729 (2011).
L.R. Domingo, E. Chamorro and P. Pe’rez, J. Org. Chem., 73, 4615 (2008); doi:10.1021/jo800572a.
P. Jaramillo, L.R. Domingo, E. Chamorro and P. Perez, J. Mol. Struct. THEOCHEM., 865, 68 (2008); doi:10.1016/j.theochem.2008.06.022.
H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); doi:10.1002/jcc.540030212.
H.B. Schlegel, in ed.: D.R. Yarkony, Geometry Optimization on Potential Energy Surface, In: Modern Electronic Structure Theory, World Scientific, Singapore (1994).
P. Perez, L.R. Domingo, M. Duque-Noren and E. Chamorro, J. Mol. Struct. THEOCHEM., 895, 86 (2009); doi:10.1016/j.theochem.2008.10.014.
J.L. Gazquez, in ed.: K.D. Sen, Chemical Hardness Structure and Bonding, In: Chemical Hardness Structure and Bonding, Spinger-Verlag: Berlin, vol. 80, p. 27 (1993).
M.J. Frisch, G.W. Trucks and H.B.Schlegel, Gaussian 03; Revision D.01. Gaussian, Inc.: Wallingford (2004).
J.K. Labanowski and J.W. Andzelm, Density Functional Methods in Chemistry; Springer Verlag: New York, pp 49-60 (1991).
A.D. Becke, J. Chem. Phys., 98, 1372 (1993); doi:10.1063/1.464304.
A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); doi:10.1063/1.445134.
A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); doi:10.1063/1.449486.
K. Fukui, T. Yonezawa and H. Shingu, J. Chem. Phys., 20, 722 (1952); doi:10.1063/1.1700523.
L.H. Mendoza-Huizar and C.H. Rios-Reyes, J. Mex. Chem. Soc., 55, 142 (2011).
A.Y. Musa, A.H. Kadhum, A.B. Mohamad, A.A.B. Rahoma and H. Mesmari, J. Mol. Struct., 969, 233 (2010); doi:10.1016/j.molstruc.2010.02.051.
G. Gece and S. Bilgic, Corros. Sci., 51, 1876 (2009); doi:10.1016/j.corsci.2009.04.003.
I. Fleming, Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: New York (1976).
E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); doi:10.1016/S0065-3276(08)60236-1.
F.J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); doi:10.1007/s002149900013.
R.K. Singh, K.V. Suresh and D.S. Prabhu, Int. J. Chem. Technol. Res., 3, 1571 (2011).