Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Bacterial Cellulose-Acrylamide Hydrogel Prepared from Banana Peels
Corresponding Author(s) : Raudhatul Fadhilah
Asian Journal of Chemistry,
Vol. 28 No. 6 (2016): Vol 28 Issue 6
Abstract
The synthesis of bacterial cellulose hydrogel prepared from banana peel chemically cross-linked with acrylamide is reported. The cross-linkage is proven by Fourier transform infrared spectroscopy. The highest gel fraction value was 90 % in the bacterial cellulose with the addition of acrylamide by 15 %. Hydrogel performance is shown by the degree of swelling in the NaCl and water solvent. The results show that before bacterial cellulose was cross-linked with acrylamide in the water, it has a much larger swelling degree (1228.57) than in NaCl (847.62). Acrylamide involvement affects the swelling degree of bacterial cellulose hydrogels with the trend in the 0.5 M NaCl solvent is the higher the concentration of acrylamide, the greater the swelling degree; the highest degree was 882.35 (C acrylamide = 15 %). While by water solvent, the degree of swellingdecreases along with the increase of acrylamide concentration. The highest degree of swelling by water solvent is 925.86 when the concentration of acrylamide is 10 %. The presence of acrylamide causes an increase of hydrogel cross-linking density, which means that water to hydrogel tissue diffusion power decreased and lead to relatively lower hydrogel swelling ratio.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.A. Peppas, Y. Huang, M. Torres-Lugo, J.H. Ward and J. Jang, Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology, Purdue University, Indiana, USA (2000).
- Z. Mehr and K. Kabiri, Iranian Polym. J., 17, 45 (2008).
- C. Weller and F. Sussman, J. Pharm. Prac. Res., 36, 318 (2006).
- T. Muthia, Arena Tekstil, 24, 60 (2009).
- P. Beldon, Wound Essential, 5, 140 (2010).
- A. Sannino, C. Demitri and M. Madaghiele, Materials, 2, 353 (2009); doi:10.3390/ma2020353.
- E.E. Brown, Ph.D. Thesis, Bacterial Cellulose/Thermoplastic Polymer Nanocomposites, Department of Chemical Engineering Washington State University, USA (2007).
- P.S. Panesar, Y.V. Chavan, M.B. Bera, O. Chand and H. Kumar, Asian J. Chem., 21, 99 (2009).
- S. Rimdusit, K. Somsaeng, P. Kewsuwan, C. Jubsilp and S. Tiptipakorn, J. Eng., 16, 15 (2012); doi:10.4186/ej.2012.16.4.15.
- P. Erizal, Tita and S.P. Dewi, Indo J. Mater. Sci., 13, 536 (2008).
- Q. Wen, Z. Chen, Y. Zhao, H. Zhang and Y. Feng, J. Hazard. Mater., 175, 955 (2010); doi:10.1016/j.jhazmat.2009.10.102.
- I. Gibas and H. Janik, Chem. Chem. Technol., 4, 297 (2010).
- J. Zhang, J. Rong, W. Li, Z. Lin and X. Zhang, Acta Polym. Sinica, 011, 602 (2011); doi:10.3724/SP.J.1105.2011.10137.
- M. Pandey, M.C.I.M. Amin, N. Ahmad and M.M. Abeer, Int. J. Polym. Sci., Article ID 905471 (2013); doi:10.1155/2013/905471.
- S. Mulijani, T.T. Erizal, T.T. Irawadi and T.C. Katresna, Adv. Mater. Res., 974, 91 (2014); doi:10.4028/www.scientific.net/AMR.974.91.
- G.B. Marandi, K. Esfandiari, F. Biranvand, M. Babapour, S. Sadeh and G.R. Mahdavinia, J. Appl. Polym. Sci., 109, 1083 (2008); doi:10.1002/app.28205.
- N. Halib, M.C.I.M. Amin and I. Ahmad, J. Appl. Polym. Sci., 116, 2920 (2010); doi:10.1002/app.31857.
- M. Fan, D. Dai and B. Huang, in ed.: S. Salih, Fourier Transform Materials Analysis, InTech Europe, Croatia, p. 53 (2012).
References
N.A. Peppas, Y. Huang, M. Torres-Lugo, J.H. Ward and J. Jang, Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology, Purdue University, Indiana, USA (2000).
Z. Mehr and K. Kabiri, Iranian Polym. J., 17, 45 (2008).
C. Weller and F. Sussman, J. Pharm. Prac. Res., 36, 318 (2006).
T. Muthia, Arena Tekstil, 24, 60 (2009).
P. Beldon, Wound Essential, 5, 140 (2010).
A. Sannino, C. Demitri and M. Madaghiele, Materials, 2, 353 (2009); doi:10.3390/ma2020353.
E.E. Brown, Ph.D. Thesis, Bacterial Cellulose/Thermoplastic Polymer Nanocomposites, Department of Chemical Engineering Washington State University, USA (2007).
P.S. Panesar, Y.V. Chavan, M.B. Bera, O. Chand and H. Kumar, Asian J. Chem., 21, 99 (2009).
S. Rimdusit, K. Somsaeng, P. Kewsuwan, C. Jubsilp and S. Tiptipakorn, J. Eng., 16, 15 (2012); doi:10.4186/ej.2012.16.4.15.
P. Erizal, Tita and S.P. Dewi, Indo J. Mater. Sci., 13, 536 (2008).
Q. Wen, Z. Chen, Y. Zhao, H. Zhang and Y. Feng, J. Hazard. Mater., 175, 955 (2010); doi:10.1016/j.jhazmat.2009.10.102.
I. Gibas and H. Janik, Chem. Chem. Technol., 4, 297 (2010).
J. Zhang, J. Rong, W. Li, Z. Lin and X. Zhang, Acta Polym. Sinica, 011, 602 (2011); doi:10.3724/SP.J.1105.2011.10137.
M. Pandey, M.C.I.M. Amin, N. Ahmad and M.M. Abeer, Int. J. Polym. Sci., Article ID 905471 (2013); doi:10.1155/2013/905471.
S. Mulijani, T.T. Erizal, T.T. Irawadi and T.C. Katresna, Adv. Mater. Res., 974, 91 (2014); doi:10.4028/www.scientific.net/AMR.974.91.
G.B. Marandi, K. Esfandiari, F. Biranvand, M. Babapour, S. Sadeh and G.R. Mahdavinia, J. Appl. Polym. Sci., 109, 1083 (2008); doi:10.1002/app.28205.
N. Halib, M.C.I.M. Amin and I. Ahmad, J. Appl. Polym. Sci., 116, 2920 (2010); doi:10.1002/app.31857.
M. Fan, D. Dai and B. Huang, in ed.: S. Salih, Fourier Transform Materials Analysis, InTech Europe, Croatia, p. 53 (2012).