Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Methyl Palmitate as Biodiesel Main Target Compound by Organic Alkalis Based Deep Eutectic Solvents
Corresponding Author(s) : K.H. Row
Asian Journal of Chemistry,
Vol. 28 No. 6 (2016): Vol 28 Issue 6
Abstract
The green synthesis of methyl palmitate as a biodiesel main target compound was developed by the esterification of palmitic acid over organic alkali-based deep eutectic solvents. Three organic alkali-based deep eutectic solvents were assessed as catalysts for the synthesis in this study. The optimal deep eutectic solvent was prepared from choline chloride and glycerol (1:5) and the methanol to deep eutectic solvent ratio was 20 % (v:v). The reaction was optimized at a methanol/palmitic acid ratio of 10:1 (methanol 10 mL, palmitic acid 1 mg) at 30 °C for 60 min. Under optimized conditions, good calibration curves were obtained at phenolic acid concentrations, ranging from 10 to 500 μg/mL. The method recovery ranged from 99.2 to 99.8 % and the inter-day and intra-day relative standard deviations were less than 5 %. Under deep eutectic solvent catalysis, the methyl palmitate yield was 92.5 %. Overall, organic alkali-based deep eutectic solvents are expected to find applications in the preparation of biodiesel.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.Y.C. Leung, X. Wu and M.K.H. Leung, Appl. Energy, 87, 1083 (2010); doi:10.1016/j.apenergy.2009.10.006.
- M.B. Dantas, M.M. Conceicao, V.J. Fernandes Jr., N.A. Santos, R. Rosenhaim, A.L.B. Marques, I.M.G. Santos and A.G. Souza, J. Therm. Anal. Calorim., 87, 835 (2007); doi:10.1007/s10973-006-7780-2.
- X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Fuel, 87, 216 (2008); doi:10.1016/j.fuel.2007.04.013.
- M.I. Al-Widyan and A.O. Al-Shyoukh, Bioresour. Technol., 85, 253 (2002); doi:10.1016/S0960-8524(02)00135-9.
- V.T. Wyatt, M.A. Hess, R.O. Dunn, T.A. Foglia, M.J. Haas and W.N. Marmer, J. Am. Oil Chem. Soc., 82, 585 (2005); doi:10.1007/s11746-005-1113-2.
- L.C. Meher, D. Vidya Sagar and S.N. Naik, Renew. Sustain. Energy Rev., 10, 248 (2006); doi:10.1016/j.rser.2004.09.002.
- G. Knothe, C.A. Sharp and T.W. Ryan, Energy Fuels, 20, 403 (2006); doi:10.1021/ef0502711.
- K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Energy Fuels, 25, 2671 (2011); doi:10.1021/ef2004943.
- K. Shahbaz, F.S. Bagh, F.S. Mjalli, I.M. AlNashef and M.A. Hashim, Fluid Phase Equilib., 354, 304 (2013); doi:10.1016/j.fluid.2013.06.050.
- A.P. Abbott, D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, J. Am. Oil Chem. Soc., 126, 9142 (2004); doi:10.1021/ja048266j.
- H. Zhao and G.A. Baker, J. Chem. Technol. Biotechnol., 88, 3 (2013); doi:10.1002/jctb.3935.
- Z. Maugeri, W. Leitner and P. Domínguez de María, Tetrahedron Lett., 53, 6968 (2012); doi:10.1016/j.tetlet.2012.10.044.
- K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Separ. Purif. Tech., 81, 216 (2011); doi:10.1016/j.seppur.2011.07.032.
- M. Hayyan, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Fuel Process. Technol., 91, 116 (2010); doi:10.1016/j.fuproc.2009.09.002.
- Y.H. Choi, J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I.W.C.E. Arends, G.J. Witkamp and R. Verpoorte, Plant Physiol., 156, 1701 (2011); doi:10.1104/pp.111.178426.
- Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jérôme, Royal Soc. Chem., 41, 7108 (2012); doi:10.1039/c2cs35178a.
References
D.Y.C. Leung, X. Wu and M.K.H. Leung, Appl. Energy, 87, 1083 (2010); doi:10.1016/j.apenergy.2009.10.006.
M.B. Dantas, M.M. Conceicao, V.J. Fernandes Jr., N.A. Santos, R. Rosenhaim, A.L.B. Marques, I.M.G. Santos and A.G. Souza, J. Therm. Anal. Calorim., 87, 835 (2007); doi:10.1007/s10973-006-7780-2.
X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Fuel, 87, 216 (2008); doi:10.1016/j.fuel.2007.04.013.
M.I. Al-Widyan and A.O. Al-Shyoukh, Bioresour. Technol., 85, 253 (2002); doi:10.1016/S0960-8524(02)00135-9.
V.T. Wyatt, M.A. Hess, R.O. Dunn, T.A. Foglia, M.J. Haas and W.N. Marmer, J. Am. Oil Chem. Soc., 82, 585 (2005); doi:10.1007/s11746-005-1113-2.
L.C. Meher, D. Vidya Sagar and S.N. Naik, Renew. Sustain. Energy Rev., 10, 248 (2006); doi:10.1016/j.rser.2004.09.002.
G. Knothe, C.A. Sharp and T.W. Ryan, Energy Fuels, 20, 403 (2006); doi:10.1021/ef0502711.
K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Energy Fuels, 25, 2671 (2011); doi:10.1021/ef2004943.
K. Shahbaz, F.S. Bagh, F.S. Mjalli, I.M. AlNashef and M.A. Hashim, Fluid Phase Equilib., 354, 304 (2013); doi:10.1016/j.fluid.2013.06.050.
A.P. Abbott, D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, J. Am. Oil Chem. Soc., 126, 9142 (2004); doi:10.1021/ja048266j.
H. Zhao and G.A. Baker, J. Chem. Technol. Biotechnol., 88, 3 (2013); doi:10.1002/jctb.3935.
Z. Maugeri, W. Leitner and P. Domínguez de María, Tetrahedron Lett., 53, 6968 (2012); doi:10.1016/j.tetlet.2012.10.044.
K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Separ. Purif. Tech., 81, 216 (2011); doi:10.1016/j.seppur.2011.07.032.
M. Hayyan, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Fuel Process. Technol., 91, 116 (2010); doi:10.1016/j.fuproc.2009.09.002.
Y.H. Choi, J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I.W.C.E. Arends, G.J. Witkamp and R. Verpoorte, Plant Physiol., 156, 1701 (2011); doi:10.1104/pp.111.178426.
Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jérôme, Royal Soc. Chem., 41, 7108 (2012); doi:10.1039/c2cs35178a.