Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Properties of Fe3O4/SiO2/TiO2 Core-Shell Nanocomposite as Recoverable Photocatalyst
Corresponding Author(s) : E.S. Kunarti
Asian Journal of Chemistry,
Vol. 28 No. 6 (2016): Vol 28 Issue 6
Abstract
The Fe3O4/SiO2/TiO2 nanocomposite has been prepared by coating magnetite core particles with silica and photoactive titania using sono-coprecipitation and sol-gel methods followed by microwave assisted synthesis. The nanocomposite was characterized by X-ray diffraction, infrared spectroscopic analysis, diffuse reflectance spectroscopy and transmission electron microscopy. Results showed that the product is Fe3O4 crystal coated with SiO2 and TiO2. Transmission electron microscopy image showed that core-shell structure of Fe3O4/SiO2/TiO2 has been produced. The prepared photocatalyst presented good photocatalytic activities for the degradation of methylene blue under UV irradiation. The Fe3O4/SiO2/TiO2 nanocomposite could be easily recovered by the application of external magnetic field for reuse.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- S. Yin, B. Liu, P.L. Zhang, T. Morikawa, K. Yamanaka and T. Sato, J. Phys. Chem. C, 112, 12425 (2008); doi:10.1021/jp803371s.
- H. Taoda, Res. Chem. Intermed., 34, 417 (2008); doi:10.1163/156856708784040579.
- M.H. Habibi, S. Tangestaninejad and B. Yadollahi, Appl. Catal. B, 33, 57 (2001); doi:10.1016/S0926-3373(01)00158-8.
- X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); doi:10.1021/cr0500535.
- V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi and A. Rostami-Vartooni, J. Iran. Chem. Soc., 6, 578 (2009); doi:10.1007/BF03246537.
- W. Choi, Catal. Surv. Asia, 10, 16 (2006); doi:10.1007/s10563-006-9000-2.
- Y. Gao, B. Chen, H. Li and Y. Ma, Mater. Chem. Phys., 80, 348 (2003); doi:10.1016/S0254-0584(02)00515-1.
- M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen and Y. Yin, Chem. Eur. J., 16, 6243 (2010); doi:10.1002/chem.200903516.
- Y. Ruzmanova, M. Stoller and A. Chianese, Chem. Eng. Trans., 32, 2269 (2013); doi:10.3303/CET1332379.
- A. Schatz, M. Hager and O. Reiser, Adv. Funct. Mater., 19, 2109 (2009); doi:10.1002/adfm.200801861.
- S. Abramson, L. Srithammavanh, J.-M. Siaugue, O. Horner, X. Xu and V. Cabuil, J. Nanopart. Res., 11, 459 (2009); doi:10.1007/s11051-008-9484-y.
- C. Xue, Q. Zhang, J. Li, X. Chou, W. Zhang, H. Ye, Z. Cui and P.J. Dobson, J. Nanomater., Article ID 762423 (2013); doi:10.1155/2013/762423.
- Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang and L.D. Zhang, Chem. Phys. Lett., 365, 300 (2002); doi:10.1016/S0009-2614(02)01499-9.
- L.M. Sikhwivhilu, S. Sinha Ray and N.J. Coville, Appl. Phys., A Mater. Sci. Process., 94, 963 (2009); doi:10.1007/s00339-008-4877-4.
- B. Roy and P.A. Fuierer, J. Am. Ceram. Soc., 93, 436 (2010); doi:10.1111/j.1551-2916.2009.03415.x.
- D.L. Morgan, G. Triani, M.G. Blackford, N.A. Raftery, R.L. Frost and E.R. Waclawik, J. Mater. Sci., 46, 548 (2011); doi:10.1007/s10853-010-5016-0.
- S.C. Pang, S.Y. Kho and S.F. Chin, J. Nanomater., Article ID 427310 (2012); doi:10.1155/2012/427310.
References
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
S. Yin, B. Liu, P.L. Zhang, T. Morikawa, K. Yamanaka and T. Sato, J. Phys. Chem. C, 112, 12425 (2008); doi:10.1021/jp803371s.
H. Taoda, Res. Chem. Intermed., 34, 417 (2008); doi:10.1163/156856708784040579.
M.H. Habibi, S. Tangestaninejad and B. Yadollahi, Appl. Catal. B, 33, 57 (2001); doi:10.1016/S0926-3373(01)00158-8.
X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); doi:10.1021/cr0500535.
V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi and A. Rostami-Vartooni, J. Iran. Chem. Soc., 6, 578 (2009); doi:10.1007/BF03246537.
W. Choi, Catal. Surv. Asia, 10, 16 (2006); doi:10.1007/s10563-006-9000-2.
Y. Gao, B. Chen, H. Li and Y. Ma, Mater. Chem. Phys., 80, 348 (2003); doi:10.1016/S0254-0584(02)00515-1.
M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen and Y. Yin, Chem. Eur. J., 16, 6243 (2010); doi:10.1002/chem.200903516.
Y. Ruzmanova, M. Stoller and A. Chianese, Chem. Eng. Trans., 32, 2269 (2013); doi:10.3303/CET1332379.
A. Schatz, M. Hager and O. Reiser, Adv. Funct. Mater., 19, 2109 (2009); doi:10.1002/adfm.200801861.
S. Abramson, L. Srithammavanh, J.-M. Siaugue, O. Horner, X. Xu and V. Cabuil, J. Nanopart. Res., 11, 459 (2009); doi:10.1007/s11051-008-9484-y.
C. Xue, Q. Zhang, J. Li, X. Chou, W. Zhang, H. Ye, Z. Cui and P.J. Dobson, J. Nanomater., Article ID 762423 (2013); doi:10.1155/2013/762423.
Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang and L.D. Zhang, Chem. Phys. Lett., 365, 300 (2002); doi:10.1016/S0009-2614(02)01499-9.
L.M. Sikhwivhilu, S. Sinha Ray and N.J. Coville, Appl. Phys., A Mater. Sci. Process., 94, 963 (2009); doi:10.1007/s00339-008-4877-4.
B. Roy and P.A. Fuierer, J. Am. Ceram. Soc., 93, 436 (2010); doi:10.1111/j.1551-2916.2009.03415.x.
D.L. Morgan, G. Triani, M.G. Blackford, N.A. Raftery, R.L. Frost and E.R. Waclawik, J. Mater. Sci., 46, 548 (2011); doi:10.1007/s10853-010-5016-0.
S.C. Pang, S.Y. Kho and S.F. Chin, J. Nanomater., Article ID 427310 (2012); doi:10.1155/2012/427310.