Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Compound Formation Between Transition Metals Using Orbital Electronegativities
Corresponding Author(s) : Chang-Suk Han
Asian Journal of Chemistry,
Vol. 28 No. 5 (2016): Vol 28 Issue 5
Abstract
Compound formation between transition metals is predicted by three sorts of bonding parameters based on simplified bond orbital model and orbital electronegativities. These bonding parameters are constructed for sp, sd and sd(as) bonding modes. Overlapping effect of s-orbital on d-orbital is considered in construction of sd(as) bonding parameter. In the present study, sd and sd(as) bonding are assumed for 3d/3d combination and for remnant ones, respectively and sp bonding effect is also considered in Sc, Y and La compounds. Using these bonding parameters, formation of binary transition metal compound with a fixed melting point can be judged using these bonding parameters at the agreement of about 84 % with phase diagram results. Subsequently, heat of formation for AB compound is calculated from a proposed energy function and the calculated values show good agreement with experimental ones. Further, the agreement is comparable with the results by Miedema’s empirical rule.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.I. Frolov and M.G. Kiselev, J. Phys. Chem. B, 118, 11769 (2014); doi:10.1021/jp505731z.
- S.P. Sun, D.Q. Yi, Y. Jiang, B. Zang, C.H. Xu and Y. Li, Chem. Phys. Lett., 513, 149 (2011); doi:10.1016/j.cplett.2011.07.076.
- T.N. Gribanova, R.M. Minyaev and V.I. Minkin, Phys. Chem. Chem. Phys., 14, 14803 (2012); doi:10.1039/c2cp41839h.
- H. Dagistanli and R.H. Mutlu, Radiat. Phys. Chem., 81, 240 (2012); doi:10.1016/j.radphyschem.2011.11.046.
- K. Richter, A. Birkner and A.V. Mudring, Phys. Chem. Chem. Phys., 13, 7136 (2011); doi:10.1039/c0cp02623a.
- A.R. Miedema, Physica B, 182, 1 (1992); doi:10.1016/0921-4526(92)90565-A.
- D. Errandonea, J. Phys. Chem. Solids, 67, 2017 (2006); doi:10.1016/j.jpcs.2006.05.031.
- I.I. Oleinik and D.G. Pettifor, Phys. Rev. B, 59, 8500 (1999); doi:10.1103/PhysRevB.59.8500.
- L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithica, Ch. 3 (1960).
- D.G. Pettifor, Phys. Rev. Lett., 42, 846 (1979); doi:10.1103/PhysRevLett.42.846.
References
A.I. Frolov and M.G. Kiselev, J. Phys. Chem. B, 118, 11769 (2014); doi:10.1021/jp505731z.
S.P. Sun, D.Q. Yi, Y. Jiang, B. Zang, C.H. Xu and Y. Li, Chem. Phys. Lett., 513, 149 (2011); doi:10.1016/j.cplett.2011.07.076.
T.N. Gribanova, R.M. Minyaev and V.I. Minkin, Phys. Chem. Chem. Phys., 14, 14803 (2012); doi:10.1039/c2cp41839h.
H. Dagistanli and R.H. Mutlu, Radiat. Phys. Chem., 81, 240 (2012); doi:10.1016/j.radphyschem.2011.11.046.
K. Richter, A. Birkner and A.V. Mudring, Phys. Chem. Chem. Phys., 13, 7136 (2011); doi:10.1039/c0cp02623a.
A.R. Miedema, Physica B, 182, 1 (1992); doi:10.1016/0921-4526(92)90565-A.
D. Errandonea, J. Phys. Chem. Solids, 67, 2017 (2006); doi:10.1016/j.jpcs.2006.05.031.
I.I. Oleinik and D.G. Pettifor, Phys. Rev. B, 59, 8500 (1999); doi:10.1103/PhysRevB.59.8500.
L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithica, Ch. 3 (1960).
D.G. Pettifor, Phys. Rev. Lett., 42, 846 (1979); doi:10.1103/PhysRevLett.42.846.