Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Graphene-Supported Pt-Based Intermetallic as Highly Efficient Catalysts in Fuel Cells
Corresponding Author(s) : L.Z. Zheng
Asian Journal of Chemistry,
Vol. 25 No. 11 (2013): Vol 25 Issue 11
Abstract
Graphene-supported Pt and PtxMy (M = Fe, Co and Cu) intermetallic catalysts are prepared by thermal treatment approach and characterized with X-ray diffraction, scanning electron micrographs and rotating disk electrode. Electrocatalytic performance of the prepared materials revealed that they have higher catalytic activity and stability than commercial Pt/C for both the ethanol oxidation reaction and the oxygen reduction reaction in direct alcohol fuel cells. The enhanced electrocatalytic performance of the prepared catalysts is attributed to the Pt alloyed with transition metal (Fe, Co and Cu), which changes both the geometric and electronic structures of Pt in the solution. Therefore, from the electrochemical, morphological and compositional results, it has demonstrated that a better performance of ethanol oxidation reaction and oxygen reduction reaction could be realized at the graphene-supported Pt-based intermetallic catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Carrette, K.A. Friedrich and U. Stimming, Fuel Cells, 1, 5 (2001).
- Y.L. Hsin, K.C. Hwang and C.T. Yeh, J. Am. Chem. Soc., 129, 9999 (2007).
- K. Junhyung, W.L. Seung, C. Christopher and S.H. Yang, J. Phys. Chem. Lett., 2, 1332 (2011).
- A. Kloke, F.V. Stetten, R. Zengerle and S. Kerzenmacher, Adv. Mater., 23, 4976 (2011).
- M.U. Sreekuttan, M.D. Vishal, K.P. Vijayamohanan and K. Sreekumar, J. Phys. Chem. C., 114, 14654 (2010).
- H.R. Byon, J. Suntivich and S.H. Yang, Chem. Mater., 23, 3421 (2011).
- V. Stamenkovic, T.J. Schmidt, P.N. Ross and N.M. Markovic, J. Phys. Chem. B, 106, 11970 (2002).
- J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki and R.R. Adzic, J. Phys. Chem. B, 108, 10955 (2004).
- S. Mukerjee, S. Srinivasan, M.P. Soriaga and J. McBreen, J. Electrochem. Soc., 142, 1409 (1995).
- J. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis and R.R. Adzic, J. Am. Chem. Soc., 127, 12480 (2005).
- K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang and G.A. Somorjai, Nano Lett., 7, 3097 (2007).
- P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney and A. Nilsson, Nature Chem., 2, 454 (2010).
- E. Antolini, J.R.C. Salgado and E.R. Gonzalez, J. Power Sour., 160, 957 (2006).
- S. Mukerjee, S. Srinivasan, M.P. Soriaga and J. McBreen, J. Electrochem. Soc., 142, 1409 (1995).
- B.S. Mun, M. Watanabe, M. Rossi, V. Stamenkovic, N.M. Markovic and J. Ross, J. Chem. Phys., 123, 204717 (2005).
- F. Hasche, M. Oezaslan and P. Strasser, ChemCatChem., 3, 1805 (2011).
- A. Morozan, B. Jousselme and S. Palacin, Energy Environ. Sci., 4, 1238 (2011).
- C.J. Zhong, J. Luo, B. Fang, B.N. Wanjala, P.N. Njoki, R. Loukrakpam and J. Yin, Nanotechnology, 21, 062001 (2010).
- D.S. Wang and Y.D. Li, Adv. Mater., 23, 1044 (2011).
- R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao and S.H. Sun, Adv. Mater., 22, 2729 (2010).
- D.S. Wang, P. Zhao and Y.D. Li, Scientific Reports, 1, 37 (2011).
- S.H. Zhou, B. Varughese, B. Eichhorn, G. Jackson and K. McIlwrath, Angew. Chem., 117, 4615 (2005).
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
- X.B. Yan, J.T. Chen, J. Yang, Q.J. Xue and P. Miele, Appl. Mater. Interf., 2, 2521 (2010).
- Y.C. Xing, L. Li, C.C. Chusuei R. and V. Hull, Langmuir, 21, 4185 (2005).
- J.J. Wang, G.P. Yin, Y.Y. Shao, Z.B. Wang and Y.Z. Gao, J. Phys. Chem. C, 112, 5784 (2008).
References
L. Carrette, K.A. Friedrich and U. Stimming, Fuel Cells, 1, 5 (2001).
Y.L. Hsin, K.C. Hwang and C.T. Yeh, J. Am. Chem. Soc., 129, 9999 (2007).
K. Junhyung, W.L. Seung, C. Christopher and S.H. Yang, J. Phys. Chem. Lett., 2, 1332 (2011).
A. Kloke, F.V. Stetten, R. Zengerle and S. Kerzenmacher, Adv. Mater., 23, 4976 (2011).
M.U. Sreekuttan, M.D. Vishal, K.P. Vijayamohanan and K. Sreekumar, J. Phys. Chem. C., 114, 14654 (2010).
H.R. Byon, J. Suntivich and S.H. Yang, Chem. Mater., 23, 3421 (2011).
V. Stamenkovic, T.J. Schmidt, P.N. Ross and N.M. Markovic, J. Phys. Chem. B, 106, 11970 (2002).
J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki and R.R. Adzic, J. Phys. Chem. B, 108, 10955 (2004).
S. Mukerjee, S. Srinivasan, M.P. Soriaga and J. McBreen, J. Electrochem. Soc., 142, 1409 (1995).
J. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis and R.R. Adzic, J. Am. Chem. Soc., 127, 12480 (2005).
K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang and G.A. Somorjai, Nano Lett., 7, 3097 (2007).
P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney and A. Nilsson, Nature Chem., 2, 454 (2010).
E. Antolini, J.R.C. Salgado and E.R. Gonzalez, J. Power Sour., 160, 957 (2006).
S. Mukerjee, S. Srinivasan, M.P. Soriaga and J. McBreen, J. Electrochem. Soc., 142, 1409 (1995).
B.S. Mun, M. Watanabe, M. Rossi, V. Stamenkovic, N.M. Markovic and J. Ross, J. Chem. Phys., 123, 204717 (2005).
F. Hasche, M. Oezaslan and P. Strasser, ChemCatChem., 3, 1805 (2011).
A. Morozan, B. Jousselme and S. Palacin, Energy Environ. Sci., 4, 1238 (2011).
C.J. Zhong, J. Luo, B. Fang, B.N. Wanjala, P.N. Njoki, R. Loukrakpam and J. Yin, Nanotechnology, 21, 062001 (2010).
D.S. Wang and Y.D. Li, Adv. Mater., 23, 1044 (2011).
R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao and S.H. Sun, Adv. Mater., 22, 2729 (2010).
D.S. Wang, P. Zhao and Y.D. Li, Scientific Reports, 1, 37 (2011).
S.H. Zhou, B. Varughese, B. Eichhorn, G. Jackson and K. McIlwrath, Angew. Chem., 117, 4615 (2005).
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
X.B. Yan, J.T. Chen, J. Yang, Q.J. Xue and P. Miele, Appl. Mater. Interf., 2, 2521 (2010).
Y.C. Xing, L. Li, C.C. Chusuei R. and V. Hull, Langmuir, 21, 4185 (2005).
J.J. Wang, G.P. Yin, Y.Y. Shao, Z.B. Wang and Y.Z. Gao, J. Phys. Chem. C, 112, 5784 (2008).