Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectral Characterization, Docking Analysis, DNA Binding/Cleavage, Antimicrobial and Cytotoxic Activity of New Dimeric Antipyrine-Schiff Base Metal Complexes
Corresponding Author(s) : Abdel-Nasser M.A. Alaghaz
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
In the present study, a new series of novel Schiff base ligand derived from (furan-2-carbaldehyde and 4-aminoantipyrine) and dimeric metal(II) complexes with the composition of [MLCl2]2, where M=Cu(II), Co(II), Ni(II) and Zn(II) have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductivity measurements, FT-IR, UV-visible, 1H NMR, 13C NMR, EPR, MS (ESI), XRD, SEM and EDX studies. The spectral data recommend that the dimeric metal complexes embrace octahedral geometry around the central metal ions. The DMF solutions of the dimeric metal complexes demonstrate the lower molar conductance values which might be due to the non-electrolytic nature of the complexes (5.67-13.24 Ω-1 mol-1 cm-2). The biological studies involved are DNA interaction (binding and damage) antimicrobial, anti-proliferative and molecular docking. DNA interaction of these complexes carried out with using calf thymus DNA (CT-DNA) by electronic absorption titration, viscometric measurement which revealed that the synthesized dimeric complexes interact with DNA through intercalative binding mode. A gel electro-phoresis assay testifies the ability of complexes to cleave supercoiled pUC19 DNA in the presence of hydrogen peroxide as an activator. The synthesized compounds were initiated from their biological perspective. The antimicrobial assay indicates that dimeric complexes are good antimicrobial agents. Besides, in vitro antiproliferative activity of dimeric complexes were investigated on MCF-7, Hep G2, HBL-100 cell lines using an MTT assay. In addition, the molecular docking study was accomplished to considerate the nature of binding of the synthesized compounds with protein and DNA.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Nath and P.K. Saini, Dalton Trans., 40, 7077 (2011); https://doi.org/10.1039/c0dt01426e.
- P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C.
- N. Ananthi, U. Balakrishnan, S. Velmathi, K.B. Manjunath and G. Umesh, Opt. Photonics J., 2, 40 (2012); https://doi.org/10.4236/opj.2012.21006.
- R. Antony, S.T. David Manickam, P.V. Chandrasekar, K. Karuppasamy, P. Kollu and S. Balakumar, RSC Adv., 4, 24820 (2014); https://doi.org/10.1039/C4RA01960A.
- M. Abu-Dief and I.M.A. Mohamed, Beni-Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004.
- A. Kundu, P.S. Hariharan, K. Prabakaran and S.P. Anthony, Sens. Actuators B Chem., 206, 524 (2015); https://doi.org/10.1016/j.snb.2014.09.099.
- H.K. Liu and P.J. Sadler, Acc. Chem. Res., 44, 349 (2011); https://doi.org/10.1021/ar100140e.
- U. Jungwirth, C.R. Kowol, B.K. Keppler, C.G. Hartinger, W. Berger and P. Helffter, Antioxid. Redox Signal., 15, 1085 (2011); https://doi.org/10.1089/ars.2010.3663.
- S.L.H. Higgins, T.A. White, B.S.J. Winkel and K.J. Brewer, Inorg. Chem., 50, 463 (2011); https://doi.org/10.1021/ic100958r.
- S. Kathiresan, S. Mugesh, J. Annaraj and M. Murugan, New J. Chem., 41, 1267 (2017); https://doi.org/10.1039/C6NJ03501A.
- N. Raman, M. Selvaganapathy and S. Radhakrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 127, 185 (2014); https://doi.org/10.1016/j.saa.2014.02.018.
- M. Shamsi, S. Yadav and F. Arjmand, J. Photochem. Photobiol. B, 136, 1 (2014); https://doi.org/10.1016/j.jphotobiol.2014.04.009.
- P. Gurumoorthy, D. Mahendiran, D. Prabhu, C. Arulvasu and A.K. Rahiman, RSC Adv., 4, 42855 (2014); https://doi.org/10.1039/C4RA06941B.
- G. Dehghan, J.E.N. Dolatabadi, A. Jouyban, K.A. Zeynali, S.M. Ahmadi and S. Kashaman, DNA Cell Biol., 30, 95 (2011); https://doi.org/10.1089/dna.2010.1063.
- G. Zuber, J.C. Quada and S.M. Hecht, J. Am. Chem. Soc., 120, 9368 (1998); https://doi.org/10.1021/ja981937r.
- T. Punniyamurthy, S.J.S. Kalra and J. Iqbal, Tetrahedron Lett., 36, 8497 (1995); https://doi.org/10.1016/0040-4039(95)01780-L.
- R.K. Agarwal, L. Singh and D.K. Sharma, Bioinorg. Chem. Appl., Article ID 59509 (2006); https://doi.org/10.1155/BCA/2006/59509.
- S. Gopalakrishnan and J. Joseph, Mycobiology, 37, 141 (2009); https://doi.org/10.4489/MYCO.2009.37.2.141.
- C.A. Contreras-Celedón, J.A. Rincón-Medina, D. Mendoza-Rayo and L. Chacón-García, Appl. Organomet. Chem., 29, 439 (2015); https://doi.org/10.1002/aoc.3312.
- V. Arun, N. Sridevi, P.P. Robinson, S. Manju and K.K.M. Yusuff, J. Mol. Catal. A, 304, 191 (2009); https://doi.org/10.1016/j.molcata.2009.02.011.
- C.A. Contreras-Celedón, D. Mendoza-Rayo, J.A. Rincón-Medina and L. Chacón-García, Beilstein J. Org. Chem., 10, 2821 (2014); https://doi.org/10.3762/bjoc.10.299.
- K. Satyanarayana and M.N.A. Rao, Eur. J. Med. Chem., 30, 641 (1995); https://doi.org/10.1016/0223-5234(96)88280-8.
- I.V. Shemarova, E.B. Maizel, I.V. Voznyi, N.P. Stepanova and A.E. Khovanskikh, Pharm. Chem. J., 34, 530 (2000); https://doi.org/10.1023/A:1010355129735.
- N. Raman, S.J. Raja and A. Sakthivel, J. Coord. Chem., 62, 691 (2009); https://doi.org/10.1080/00958970802326179.
- R. Antony, S.T.D. Manickam, K. Karuppasamy, P.V. Chandrasekar, P. Kollu and S. Balakumar, RSC Adv., 4, 42816 (2014); https://doi.org/10.1039/C4RA08303B.
- D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
- B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6.
- Y. Zhou, H. Zhou, J. Zhang, L. Zhang and J. Niu, Mol. Biomol. Spect., 98, 14 (2012); https://doi.org/10.1016/j.saa.2012.08.025.
- J.B. Chaires, N. Dattagupta and D.M. Crothers, Biochemistry, 21, 3933 (1982); https://doi.org/10.1021/bi00260a005.
- Y. Li, G. Zhang and M. Tao, J. Photochem. Photobiol. B, 138, 109 (2014); https://doi.org/10.1016/j.jphotobiol.2014.05.011.
- A.K. Sadana, Y. Mirza, K.R. Aneja and O. Prakash, Eur. J. Med. Chem., 38, 533 (2003); https://doi.org/10.1016/S0223-5234(03)00061-8.
- A. van Tonder, A.M. Joubert and A.D. Cromarty, BMC Res. Notes, 8, 47 (2015); https://doi.org/10.1186/s13104-015-1000-8.
- E.E. Oruç, S. Rollas, F. Kandemirli, N. Shvets and A.S. Dimoglo, J. Med. Chem., 47, 6760 (2004); https://doi.org/10.1021/jm0495632.
- T. Sander, J. Freyss, M. von Korff, J.R. Reich and C. Rufener, J. Chem. Inf. Model., 49, 232 (2009); https://doi.org/10.1021/ci800305f.
- M.D. Segall, A.P. Beresford, J.M.R. Gola, D. Hawksley and M.H. Tarbit, Expert Opin. Drug Metab. Toxicol., 2, 325 (2006); https://doi.org/10.1517/17425255.2.2.325.
- B. Mathew, J. Suresh and S. Anbazhagan, Biomed. Aging Pathol., 4, 327 (2014); https://doi.org/10.1016/j.biomag.2014.08.002.
- F. Liu and B. Fang, Chin. J. Biotechnol., 23, 133 (2007); https://doi.org/10.1016/S1872-2075(07)60012-0.
- J.R. Durig, J.J. Klaassen, B.S. Deodhar, T.K. Gounev, A.R. Conrad and M.J. Tubergen, Spectrochim. Acta A, 87, 214 (2012); https://doi.org/10.1016/j.saa.2011.11.041.
- A.A. Abou-Hussein and W. Linert, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 763 (2014); https://doi.org/10.1016/j.saa.2013.06.078.
- E.M. Zayed, A.M.M. Hindy and G.G. Mohamed, Appl. Organomet. Chem., 32, e3952 (2018); https://doi.org/10.1002/aoc.3952.
- M.M. Omar, G.G. Mohamed and A.A. Ibrahim, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 358 (2009); https://doi.org/10.1016/j.saa.2009.02.043.
- G.G. Mohamed, M.M. Omar and A.A. Ibrahim, Eur. J. Med. Chem., 44, 4801 (2009); https://doi.org/10.1016/j.ejmech.2009.07.028.
- N. Raman, K. Pothiraj and T. Baskaran, J. Coord. Chem., 64, 3900 (2011); https://doi.org/10.1080/00958972.2011.634005.
- S. Srinivasan, P. Athappan and G. Rajagopal, Transition Met. Chem., 26, 588 (2001); https://doi.org/10.1023/A:1011007429295.
- C.X. Zhang and S.J. Lippard, Curr. Opin. Chem. Biol., 7, 481 (2003); https://doi.org/10.1016/S1367-5931(03)00081-4.
- R.F. Brissos, E. Torrents, F.M. dos Santos Mello, W. Carvalho-Pires, E. de Paula Silveira-Lacerda, A.B. Caballero, A. Caubet, C. Massera, O. Roubeau, S.J. Teat and P. Gamez, Metallomics, 6, 1853 (2014); https://doi.org/10.1039/C4MT00152D.
- D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
- P. Priya, S.V. Arunachalam, N. Sathya, C. Jayabalakrishnan and V. Chinnusamy, Transition Met. Chem., 34, 437 (2009); https://doi.org/10.1007/s11243-009-9214-z.
- S. Sarkar, A. Mondal, M.S. El Fallah, J. Ribas, D. Chopra, H. StoeckliEvans and K.K. Rajak, Polyhedron, 25, 25 (2006); https://doi.org/10.1016/j.poly.2005.06.059.
- M.S. El-Shahawi and A.F. Shoair, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 121 (2004); https://doi.org/10.1016/S1386-1425(03)00191-4.
- A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964); https://doi.org/10.1038/201068a0.
- H.H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963); https://doi.org/10.1021/ac60203a013.
- G.O. Piloyan, I.D. Ryabchikov and O.S. Novikova, Nature, 212, 1229 (1966); https://doi.org/10.1038/2121229a0.
- H. Chen, J.A. Parkinson, R.E. Morris and P.J. Sadler, J. Am. Chem. Soc., 125, 173 (2003); https://doi.org/10.1021/ja027719m.
- V.G. Vaidyanathan and B.U. Nair, Eur. J. Inorg. Chem., 9, 1840 (2004); https://doi.org/10.1002/ejic.200300718.
- F.A. Beckford, M. Shaloski Jr., G. Leblanc, J. Thessing, L.C. LewisAlleyne, A.A. Holder, L. Li and N.P. Seeram, Dalton Trans., 10757 (2009); https://doi.org/10.1039/b915081a.
- V.L. Kinnula and J.D. Crapo, Free Radic. Biol. Med., 36, 718 (2004); https://doi.org/10.1016/j.freeradbiomed.2003.12.010.
- H.F. Abd El Halim and G.G. Mohamed, Appl. Organomet. Chem., 32, e4176 (2017); https://doi.org/10.1002/aoc.4176.
- S.K. Mal, M. Mitra, G. Kaur, V.M. Manikandamathavan, M.S. Kiran, A.R. Choudhury, B.U. Nair and R. Ghosh, RSC Adv., 4, 61337 (2014); https://doi.org/10.1039/C4RA09448D.
- W.D. Wilson, L. Ratmeyer, M. Zhao, L. Strekowski and D. Boykin, Biochemistry, 32, 4098 (1993); https://doi.org/10.1021/bi00066a035.
- V.A. Kawade, A.A. Kumbhar, A.S. Kumbhar, C. Näther, A. Erxleben, U.B. Sonawane and R.R. Joshi, Dalton Trans., 40, 639 (2011); https://doi.org/10.1039/C0DT01078B.
- J. Liu, W. Zheng, S. Shi, C. Tan, J. Chen, K. Zheng and L. Ji, J. Inorg. Biochem., 102, 193 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.035.
References
M. Nath and P.K. Saini, Dalton Trans., 40, 7077 (2011); https://doi.org/10.1039/c0dt01426e.
P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C.
N. Ananthi, U. Balakrishnan, S. Velmathi, K.B. Manjunath and G. Umesh, Opt. Photonics J., 2, 40 (2012); https://doi.org/10.4236/opj.2012.21006.
R. Antony, S.T. David Manickam, P.V. Chandrasekar, K. Karuppasamy, P. Kollu and S. Balakumar, RSC Adv., 4, 24820 (2014); https://doi.org/10.1039/C4RA01960A.
M. Abu-Dief and I.M.A. Mohamed, Beni-Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004.
A. Kundu, P.S. Hariharan, K. Prabakaran and S.P. Anthony, Sens. Actuators B Chem., 206, 524 (2015); https://doi.org/10.1016/j.snb.2014.09.099.
H.K. Liu and P.J. Sadler, Acc. Chem. Res., 44, 349 (2011); https://doi.org/10.1021/ar100140e.
U. Jungwirth, C.R. Kowol, B.K. Keppler, C.G. Hartinger, W. Berger and P. Helffter, Antioxid. Redox Signal., 15, 1085 (2011); https://doi.org/10.1089/ars.2010.3663.
S.L.H. Higgins, T.A. White, B.S.J. Winkel and K.J. Brewer, Inorg. Chem., 50, 463 (2011); https://doi.org/10.1021/ic100958r.
S. Kathiresan, S. Mugesh, J. Annaraj and M. Murugan, New J. Chem., 41, 1267 (2017); https://doi.org/10.1039/C6NJ03501A.
N. Raman, M. Selvaganapathy and S. Radhakrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 127, 185 (2014); https://doi.org/10.1016/j.saa.2014.02.018.
M. Shamsi, S. Yadav and F. Arjmand, J. Photochem. Photobiol. B, 136, 1 (2014); https://doi.org/10.1016/j.jphotobiol.2014.04.009.
P. Gurumoorthy, D. Mahendiran, D. Prabhu, C. Arulvasu and A.K. Rahiman, RSC Adv., 4, 42855 (2014); https://doi.org/10.1039/C4RA06941B.
G. Dehghan, J.E.N. Dolatabadi, A. Jouyban, K.A. Zeynali, S.M. Ahmadi and S. Kashaman, DNA Cell Biol., 30, 95 (2011); https://doi.org/10.1089/dna.2010.1063.
G. Zuber, J.C. Quada and S.M. Hecht, J. Am. Chem. Soc., 120, 9368 (1998); https://doi.org/10.1021/ja981937r.
T. Punniyamurthy, S.J.S. Kalra and J. Iqbal, Tetrahedron Lett., 36, 8497 (1995); https://doi.org/10.1016/0040-4039(95)01780-L.
R.K. Agarwal, L. Singh and D.K. Sharma, Bioinorg. Chem. Appl., Article ID 59509 (2006); https://doi.org/10.1155/BCA/2006/59509.
S. Gopalakrishnan and J. Joseph, Mycobiology, 37, 141 (2009); https://doi.org/10.4489/MYCO.2009.37.2.141.
C.A. Contreras-Celedón, J.A. Rincón-Medina, D. Mendoza-Rayo and L. Chacón-García, Appl. Organomet. Chem., 29, 439 (2015); https://doi.org/10.1002/aoc.3312.
V. Arun, N. Sridevi, P.P. Robinson, S. Manju and K.K.M. Yusuff, J. Mol. Catal. A, 304, 191 (2009); https://doi.org/10.1016/j.molcata.2009.02.011.
C.A. Contreras-Celedón, D. Mendoza-Rayo, J.A. Rincón-Medina and L. Chacón-García, Beilstein J. Org. Chem., 10, 2821 (2014); https://doi.org/10.3762/bjoc.10.299.
K. Satyanarayana and M.N.A. Rao, Eur. J. Med. Chem., 30, 641 (1995); https://doi.org/10.1016/0223-5234(96)88280-8.
I.V. Shemarova, E.B. Maizel, I.V. Voznyi, N.P. Stepanova and A.E. Khovanskikh, Pharm. Chem. J., 34, 530 (2000); https://doi.org/10.1023/A:1010355129735.
N. Raman, S.J. Raja and A. Sakthivel, J. Coord. Chem., 62, 691 (2009); https://doi.org/10.1080/00958970802326179.
R. Antony, S.T.D. Manickam, K. Karuppasamy, P.V. Chandrasekar, P. Kollu and S. Balakumar, RSC Adv., 4, 42816 (2014); https://doi.org/10.1039/C4RA08303B.
D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6.
Y. Zhou, H. Zhou, J. Zhang, L. Zhang and J. Niu, Mol. Biomol. Spect., 98, 14 (2012); https://doi.org/10.1016/j.saa.2012.08.025.
J.B. Chaires, N. Dattagupta and D.M. Crothers, Biochemistry, 21, 3933 (1982); https://doi.org/10.1021/bi00260a005.
Y. Li, G. Zhang and M. Tao, J. Photochem. Photobiol. B, 138, 109 (2014); https://doi.org/10.1016/j.jphotobiol.2014.05.011.
A.K. Sadana, Y. Mirza, K.R. Aneja and O. Prakash, Eur. J. Med. Chem., 38, 533 (2003); https://doi.org/10.1016/S0223-5234(03)00061-8.
A. van Tonder, A.M. Joubert and A.D. Cromarty, BMC Res. Notes, 8, 47 (2015); https://doi.org/10.1186/s13104-015-1000-8.
E.E. Oruç, S. Rollas, F. Kandemirli, N. Shvets and A.S. Dimoglo, J. Med. Chem., 47, 6760 (2004); https://doi.org/10.1021/jm0495632.
T. Sander, J. Freyss, M. von Korff, J.R. Reich and C. Rufener, J. Chem. Inf. Model., 49, 232 (2009); https://doi.org/10.1021/ci800305f.
M.D. Segall, A.P. Beresford, J.M.R. Gola, D. Hawksley and M.H. Tarbit, Expert Opin. Drug Metab. Toxicol., 2, 325 (2006); https://doi.org/10.1517/17425255.2.2.325.
B. Mathew, J. Suresh and S. Anbazhagan, Biomed. Aging Pathol., 4, 327 (2014); https://doi.org/10.1016/j.biomag.2014.08.002.
F. Liu and B. Fang, Chin. J. Biotechnol., 23, 133 (2007); https://doi.org/10.1016/S1872-2075(07)60012-0.
J.R. Durig, J.J. Klaassen, B.S. Deodhar, T.K. Gounev, A.R. Conrad and M.J. Tubergen, Spectrochim. Acta A, 87, 214 (2012); https://doi.org/10.1016/j.saa.2011.11.041.
A.A. Abou-Hussein and W. Linert, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 763 (2014); https://doi.org/10.1016/j.saa.2013.06.078.
E.M. Zayed, A.M.M. Hindy and G.G. Mohamed, Appl. Organomet. Chem., 32, e3952 (2018); https://doi.org/10.1002/aoc.3952.
M.M. Omar, G.G. Mohamed and A.A. Ibrahim, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 358 (2009); https://doi.org/10.1016/j.saa.2009.02.043.
G.G. Mohamed, M.M. Omar and A.A. Ibrahim, Eur. J. Med. Chem., 44, 4801 (2009); https://doi.org/10.1016/j.ejmech.2009.07.028.
N. Raman, K. Pothiraj and T. Baskaran, J. Coord. Chem., 64, 3900 (2011); https://doi.org/10.1080/00958972.2011.634005.
S. Srinivasan, P. Athappan and G. Rajagopal, Transition Met. Chem., 26, 588 (2001); https://doi.org/10.1023/A:1011007429295.
C.X. Zhang and S.J. Lippard, Curr. Opin. Chem. Biol., 7, 481 (2003); https://doi.org/10.1016/S1367-5931(03)00081-4.
R.F. Brissos, E. Torrents, F.M. dos Santos Mello, W. Carvalho-Pires, E. de Paula Silveira-Lacerda, A.B. Caballero, A. Caubet, C. Massera, O. Roubeau, S.J. Teat and P. Gamez, Metallomics, 6, 1853 (2014); https://doi.org/10.1039/C4MT00152D.
D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
P. Priya, S.V. Arunachalam, N. Sathya, C. Jayabalakrishnan and V. Chinnusamy, Transition Met. Chem., 34, 437 (2009); https://doi.org/10.1007/s11243-009-9214-z.
S. Sarkar, A. Mondal, M.S. El Fallah, J. Ribas, D. Chopra, H. StoeckliEvans and K.K. Rajak, Polyhedron, 25, 25 (2006); https://doi.org/10.1016/j.poly.2005.06.059.
M.S. El-Shahawi and A.F. Shoair, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 121 (2004); https://doi.org/10.1016/S1386-1425(03)00191-4.
A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964); https://doi.org/10.1038/201068a0.
H.H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963); https://doi.org/10.1021/ac60203a013.
G.O. Piloyan, I.D. Ryabchikov and O.S. Novikova, Nature, 212, 1229 (1966); https://doi.org/10.1038/2121229a0.
H. Chen, J.A. Parkinson, R.E. Morris and P.J. Sadler, J. Am. Chem. Soc., 125, 173 (2003); https://doi.org/10.1021/ja027719m.
V.G. Vaidyanathan and B.U. Nair, Eur. J. Inorg. Chem., 9, 1840 (2004); https://doi.org/10.1002/ejic.200300718.
F.A. Beckford, M. Shaloski Jr., G. Leblanc, J. Thessing, L.C. LewisAlleyne, A.A. Holder, L. Li and N.P. Seeram, Dalton Trans., 10757 (2009); https://doi.org/10.1039/b915081a.
V.L. Kinnula and J.D. Crapo, Free Radic. Biol. Med., 36, 718 (2004); https://doi.org/10.1016/j.freeradbiomed.2003.12.010.
H.F. Abd El Halim and G.G. Mohamed, Appl. Organomet. Chem., 32, e4176 (2017); https://doi.org/10.1002/aoc.4176.
S.K. Mal, M. Mitra, G. Kaur, V.M. Manikandamathavan, M.S. Kiran, A.R. Choudhury, B.U. Nair and R. Ghosh, RSC Adv., 4, 61337 (2014); https://doi.org/10.1039/C4RA09448D.
W.D. Wilson, L. Ratmeyer, M. Zhao, L. Strekowski and D. Boykin, Biochemistry, 32, 4098 (1993); https://doi.org/10.1021/bi00066a035.
V.A. Kawade, A.A. Kumbhar, A.S. Kumbhar, C. Näther, A. Erxleben, U.B. Sonawane and R.R. Joshi, Dalton Trans., 40, 639 (2011); https://doi.org/10.1039/C0DT01078B.
J. Liu, W. Zheng, S. Shi, C. Tan, J. Chen, K. Zheng and L. Ji, J. Inorg. Biochem., 102, 193 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.035.