Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
p-Phthaloyl Chloride-Grafted SF Induced Biomineralization of Hydroxyapatites
Corresponding Author(s) : Guangmei Chen
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
In this paper, p-phthaloyl chloride (DB)-grafted SF films was employed to regulate the mineralization of hydroxyapatite in 1.5 × SBF (1.5 times of simulated body fluid) for 24 h at about 36.5 ºC. It was discussed that the content of DB influence on the structure and morphology of the apatite composites deposited on the SF films. The structure and morphology of the composite materials were investigated by Fourier transform infrared, inductively coupled plasma emission spectrometer, X-ray diffraction and scanning electron microscopy. The results showed that the inorganic phase of component mainly were hydroxyapatite and they were self-assembled on the organic matrix and a three-dimensional framework was formed on the SF films. Ca/P molar ratio in the surface of biocomposites could reached 1.66. And the apatite was similarity to hydroxyapatite in natural bone in both microstructure and composition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.V. Dorozhkin and M. Epple, Angew. Chem. Int. Ed., 41, 3130 (2002).
- L. Wang, G.L. Ning and M. Senna, Colloids Surf. A, 254, 159 (2005).
- M.C. Andrew, J.V.S. Nick, G. Tom, K. David, B. Caroline, I.R. Helmtrud, R.O.C. Oreffo, V.A. Sonja, B. Teodora, S. John and M. Stephen, Adv. Mater., 21, 75 (2009).
- K. Masanori, I. Soichiro, I. Shizuko, S. Kenichi and T. Junzo, Biomaterials, 22, 1705 (2001).
- Y. Wang, D.D. Rudym, A. Walsh, L. Abrahamsen, H.J. Kim, H.S. Kim, K.H. Carl and L.K. David, Biomaterials, 29, 3415 (2008).
- K. Nam, T. Kimura, S. Funamoto and A. Kishida, Acta Biomater., 6, 403 (2010).
- L. Wang and C.Z. Li, Carbohyd. Polym., 68, 740 (2007).
- C.L. Du, J. Jin, Y.C. Li, X.D. Kong, K. Wei and J. Yao, Mater. Sci. Engg. C, 29, 62 (2009).
- X.L. Ma, R. Li, L. Ru, G.W. Xu, Y.P. Huang, eXPRESS Polym. Lett., 4, 321 (2010).
- M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res., 34, 305 (1997).
- M. Tsukada, T. Arai and S. Winkler, J. Appl. Polym. Sci., 78, 382 (2000).
- M. Tsukada, Y. Goto, G. Freddi and H. Shiozaki, J. Appl. Polym. Sci., 45, 1189 (1992).
- G. Freddi, P. Monti, M. Nagura, Y. Gotoh and M. Tsukada, J. Polym. Sci. Part B: Polym. Phys., 35, 841 (1997).
- S.H. Rhee, J.D. Lee and J. Tanaka, J. Am. Ceram Soc., 83, 2890 (2000).
- U.J. Kim, J.Y. Park, H.J. Kim, M. Wada and D.L. Kaplan, Biomaterials, 26, 2775 (2005)
References
S.V. Dorozhkin and M. Epple, Angew. Chem. Int. Ed., 41, 3130 (2002).
L. Wang, G.L. Ning and M. Senna, Colloids Surf. A, 254, 159 (2005).
M.C. Andrew, J.V.S. Nick, G. Tom, K. David, B. Caroline, I.R. Helmtrud, R.O.C. Oreffo, V.A. Sonja, B. Teodora, S. John and M. Stephen, Adv. Mater., 21, 75 (2009).
K. Masanori, I. Soichiro, I. Shizuko, S. Kenichi and T. Junzo, Biomaterials, 22, 1705 (2001).
Y. Wang, D.D. Rudym, A. Walsh, L. Abrahamsen, H.J. Kim, H.S. Kim, K.H. Carl and L.K. David, Biomaterials, 29, 3415 (2008).
K. Nam, T. Kimura, S. Funamoto and A. Kishida, Acta Biomater., 6, 403 (2010).
L. Wang and C.Z. Li, Carbohyd. Polym., 68, 740 (2007).
C.L. Du, J. Jin, Y.C. Li, X.D. Kong, K. Wei and J. Yao, Mater. Sci. Engg. C, 29, 62 (2009).
X.L. Ma, R. Li, L. Ru, G.W. Xu, Y.P. Huang, eXPRESS Polym. Lett., 4, 321 (2010).
M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res., 34, 305 (1997).
M. Tsukada, T. Arai and S. Winkler, J. Appl. Polym. Sci., 78, 382 (2000).
M. Tsukada, Y. Goto, G. Freddi and H. Shiozaki, J. Appl. Polym. Sci., 45, 1189 (1992).
G. Freddi, P. Monti, M. Nagura, Y. Gotoh and M. Tsukada, J. Polym. Sci. Part B: Polym. Phys., 35, 841 (1997).
S.H. Rhee, J.D. Lee and J. Tanaka, J. Am. Ceram Soc., 83, 2890 (2000).
U.J. Kim, J.Y. Park, H.J. Kim, M. Wada and D.L. Kaplan, Biomaterials, 26, 2775 (2005)