Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copper Selenide (CuSe and Cu2Se) Nanocrystals: Controllable Synthesis Through a Facile Ultrasonic Chemical Route
Corresponding Author(s) : Hanmei Hu
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
Copper selenide (CuSe nanoflakes, Cu2Se nanoearthworms) nanocrystals have been successfully fabricated using hydrazine hydrate as a reducing agent through an ultrasonic-assisted chemical route in one-pot solution. The as-prepared products are characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and UV-visible absorption spectrum. The experimental results reveal that the appropriate reaction molar ratio of copper salt to selenium powder in the solution plays a critical role in controlling the phase and morphology of copper selenide. The chemical reaction processes for explaining the formation of copper selenide are simply studied. UV-VIS absorption spectra indicate that the synthesized flake-shaped CuSe and earthworm-like Cu2Se nanocrystals have good optical properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.T. Lakshmikumar and A.C. Rastogi, Sol. Energy Mater. Sol. Cells, 32, 7 (1994).
- J. Xu, W.X. Zhang, Z.H. Yang, S.X. Ding, C.Y. Zeng, L.L. Chen, Q. Wang and S.H. Yang, Adv. Funct. Mater., 19, 1759 (2009).
- C. Lévy-Clément, M. Neumann-Spallart, S.K. Haram and K.S.V. Santhanam, Thin Solid Films, 302, 12 (1997).
- V.M. Bhuse, P.P. Hankare, K.M. Garadkar and A.S. Khomane, Mater. Chem. Phys., 80, 82 (2003).
- P. Huang, Y.F. Kong, Z.M. Li, F. Gao and D.X. Cui, Nanoscale Res. Lett., 5, 949 (2010).
- T.P. Vinod, X. Jin and J. Kim, Mater. Res. Bull., 46, 340 (2011).
- G.J. Xiao, J.J. Ning, Z.Y. Liu, Y.M. Sui, Y.N. Wang, Q.F. Dong, W.J. Tian, B.B. Liu, G.T. Zou and B. Zou, Cryst. Eng. Comm., 14, 2139 (2012).
- P. Kumar, K. Singh and O.N. Srivastava, J. Cryst. Growth, 312, 2804 (2010).
- K.G. Liu, H. Liu, J.Y. Wang and L. Shi, J. Alloys Compd., 484, 674 (2009).
- K.H. Low, C.H. Li, V.A.L. Roy, S.S.Y. Chui, S.L.F. Chan and C.M. Che, Chem. Sci., 1, 515 (2010).
- F.X. Rong, Y. Bai, T.F. Chen and W.J. Zheng, Mater. Res. Bull., 47, 92 (2012).
- M.C. Brelle, C.T. Torres-Martinez, J.C. McNulty, R.K. Mehra and J.Z. Zhang, Pure Appl. Chem., 72, 101 (2000)
References
S.T. Lakshmikumar and A.C. Rastogi, Sol. Energy Mater. Sol. Cells, 32, 7 (1994).
J. Xu, W.X. Zhang, Z.H. Yang, S.X. Ding, C.Y. Zeng, L.L. Chen, Q. Wang and S.H. Yang, Adv. Funct. Mater., 19, 1759 (2009).
C. Lévy-Clément, M. Neumann-Spallart, S.K. Haram and K.S.V. Santhanam, Thin Solid Films, 302, 12 (1997).
V.M. Bhuse, P.P. Hankare, K.M. Garadkar and A.S. Khomane, Mater. Chem. Phys., 80, 82 (2003).
P. Huang, Y.F. Kong, Z.M. Li, F. Gao and D.X. Cui, Nanoscale Res. Lett., 5, 949 (2010).
T.P. Vinod, X. Jin and J. Kim, Mater. Res. Bull., 46, 340 (2011).
G.J. Xiao, J.J. Ning, Z.Y. Liu, Y.M. Sui, Y.N. Wang, Q.F. Dong, W.J. Tian, B.B. Liu, G.T. Zou and B. Zou, Cryst. Eng. Comm., 14, 2139 (2012).
P. Kumar, K. Singh and O.N. Srivastava, J. Cryst. Growth, 312, 2804 (2010).
K.G. Liu, H. Liu, J.Y. Wang and L. Shi, J. Alloys Compd., 484, 674 (2009).
K.H. Low, C.H. Li, V.A.L. Roy, S.S.Y. Chui, S.L.F. Chan and C.M. Che, Chem. Sci., 1, 515 (2010).
F.X. Rong, Y. Bai, T.F. Chen and W.J. Zheng, Mater. Res. Bull., 47, 92 (2012).
M.C. Brelle, C.T. Torres-Martinez, J.C. McNulty, R.K. Mehra and J.Z. Zhang, Pure Appl. Chem., 72, 101 (2000)