Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Calculations of Molecular Charge Transfer Complexes of Aryl 2-Azomethine dibenzothiophene with Nitrobenzene Derivatives as p-Acceptors
Corresponding Author(s) : M. El-Batouti
Asian Journal of Chemistry,
Vol. 28 No. 5 (2016): Vol 28 Issue 5
Abstract
Charge transfer complexes of aryl 2-azomethine dibenzothiophene with p-acceptors viz., 1,3-dinitrobenzene, 2,4-dinitrophenol and picric acid were synthesized and characterized by spectroscopic techniques viz., IR, 1H NMR and elemental analysis. The equilibrium constant (k) was determined using modified Benesi-Hildelbrand methods. The stoichiometries of the reactions were determined using photometric titration methods. The thermodynamic parameters Gibbs free energy (DG), enthalpy (DH) and entropy change (DS) were also calculated. Theoretical calculations have been carried out by density functional theory (DFT) and time-dependent density functional theory calculations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.M. Khan and A. Ahmad, J. Mol. Struct., 977, 189 (2010); doi:10.1016/j.molstruc.2010.05.031.
- P.J. Trotter and P.A. White, Appl. Spectrosc., 32, 323 (1978); doi:10.1366/000370278774331288.
- E.M. Nour and L.A. Shahada, Spectrochim. Acta A, 44, 1277 (1988); doi:10.1016/0584-8539(88)80169-7.
- G.A. Bowmaker and R.J. Knappstein, J. Chem. Soc., Dalton Trans., 1928 (1977); doi:10.1039/dt9770001928.
- M.J. Jenita A.A.M. Prabhu and N. Rajendiran, Indian J. Chem., 51A, 1686 (2012).
- M.V. Rekharsky and Y. Inoue, Chem. Rev., 98 1875 (1998); doi:10.1021/cr970015o.
- L. Seridi and A. Boufelfel, J. Mol. Liq., 158, 151 (2011); doi:10.1016/j.molliq.2010.11.011.
- S. Chaudhuri, S. Chakraborty and P.K. Sengupta, J. Mol. Struct., 975, 160 (2010); doi:10.1016/j.molstruc.2010.04.014.
- H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); doi:10.1021/ja01176a030.
- N. Alizadeh and S. Dehganikhah, J. Solution Chem., 45, 42 (2016); doi:10.1007/s10953-015-0428-8.
- R.M. Issa, M.M. Ayad, G.B. EI-Hefnawey and H.F. Rizk, Indian J. Chem., 42A, 84 (2003).
- M.M. Ayad, G.B. EI-Hefnawey, S.A. Amer and R.M. Issa, Proc. Pakistan Acad. Sci., 27, 169 (1989).
- H. Salem, J. Pharm. Biomed. Anal., 29, 527 (2002); doi:10.1016/S0731-7085(02)00100-0.
- D.A. Skoog, F.J. Holler and T.A. Nieman, Principle of Instrumental Analysis, Saunders College Publishing, New York, vol. 347, edn 5 (1992).
- M. Arslan and H. Duymus, Spectrochim. Acta A, 67, 573 (2007); doi:10.1016/j.saa.2006.06.045.
- M.Pandeeswaran and K.P.Elango, Spectrochim. Acta A, 65, 1148 (2006); doi:10.1016/j.saa.2005.12.037.
- M. Sterrer, M. Yulikov, T. Risse, H.-J. Freund, J. Carrasco, F. Illas, C. Di Valentin, L. Giordano and G. Pacchioni, Angew. Chem. Int. Ed., 45, 2633 (2006); doi:10.1002/anie.200504473.
- A. Markovits, J.C. Paniagua, N. López, C. Minot and F. Illas, Phys. Rev. B, 67, 115417 (2003); doi:10.1103/PhysRevB.67.115417.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT (2009).
- N.M. O'Boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); doi:10.1002/jcc.20823.
References
I.M. Khan and A. Ahmad, J. Mol. Struct., 977, 189 (2010); doi:10.1016/j.molstruc.2010.05.031.
P.J. Trotter and P.A. White, Appl. Spectrosc., 32, 323 (1978); doi:10.1366/000370278774331288.
E.M. Nour and L.A. Shahada, Spectrochim. Acta A, 44, 1277 (1988); doi:10.1016/0584-8539(88)80169-7.
G.A. Bowmaker and R.J. Knappstein, J. Chem. Soc., Dalton Trans., 1928 (1977); doi:10.1039/dt9770001928.
M.J. Jenita A.A.M. Prabhu and N. Rajendiran, Indian J. Chem., 51A, 1686 (2012).
M.V. Rekharsky and Y. Inoue, Chem. Rev., 98 1875 (1998); doi:10.1021/cr970015o.
L. Seridi and A. Boufelfel, J. Mol. Liq., 158, 151 (2011); doi:10.1016/j.molliq.2010.11.011.
S. Chaudhuri, S. Chakraborty and P.K. Sengupta, J. Mol. Struct., 975, 160 (2010); doi:10.1016/j.molstruc.2010.04.014.
H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); doi:10.1021/ja01176a030.
N. Alizadeh and S. Dehganikhah, J. Solution Chem., 45, 42 (2016); doi:10.1007/s10953-015-0428-8.
R.M. Issa, M.M. Ayad, G.B. EI-Hefnawey and H.F. Rizk, Indian J. Chem., 42A, 84 (2003).
M.M. Ayad, G.B. EI-Hefnawey, S.A. Amer and R.M. Issa, Proc. Pakistan Acad. Sci., 27, 169 (1989).
H. Salem, J. Pharm. Biomed. Anal., 29, 527 (2002); doi:10.1016/S0731-7085(02)00100-0.
D.A. Skoog, F.J. Holler and T.A. Nieman, Principle of Instrumental Analysis, Saunders College Publishing, New York, vol. 347, edn 5 (1992).
M. Arslan and H. Duymus, Spectrochim. Acta A, 67, 573 (2007); doi:10.1016/j.saa.2006.06.045.
M.Pandeeswaran and K.P.Elango, Spectrochim. Acta A, 65, 1148 (2006); doi:10.1016/j.saa.2005.12.037.
M. Sterrer, M. Yulikov, T. Risse, H.-J. Freund, J. Carrasco, F. Illas, C. Di Valentin, L. Giordano and G. Pacchioni, Angew. Chem. Int. Ed., 45, 2633 (2006); doi:10.1002/anie.200504473.
A. Markovits, J.C. Paniagua, N. López, C. Minot and F. Illas, Phys. Rev. B, 67, 115417 (2003); doi:10.1103/PhysRevB.67.115417.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT (2009).
N.M. O'Boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); doi:10.1002/jcc.20823.