Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Nanowire Growth of Bi-Te Alloy by Electrodeposition
Corresponding Author(s) : T.Y. Lee
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
Nanowires of Bi-Te alloy were grown in the porous anodic aluminum oxide template by electrodeposition. The compositions could be obtained from about 3 to about 40 at % Bi with varying the applied voltage and the concentration of electrolytes and confirmed by energy dispersive spectroscopy. As increasing Bi3+ ion concentrations, the content of Bi in Bi-Te alloys increases. Mixture of Bi2Te3 and Te phases were confirmed by X-ray diffraction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.E. Bell, Science, 321, 1457 (2008).
- A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar and P. Yang, Nature, 451, 163 (2008).
- T.C. Harman, P.J. Taylor, M.P. Walsh and B.E. LaForge, Science, 297, 2229 (2002).
- W. Wang, J. Goebl, L. He, S. Aloni, Y. Hu, L. Zhen and Y. Yin, J. Am. Chem. Soc., 132, 17316 (2010).
- L.D. Hicks, T.C. Harman, X. Sun and M.S. Dresselhaus, Phys. Rev. B, 53, R10493 (1996).
- J.P. Heremans, C.M. Thrush and D.T. Morelli, Phys. Rev. B, 70, 115334 (2004).
- K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis and M.G. Kanatzidis, Science, 303, 818 (2004).
- Y. Zhang, H. Wang, S. Kraemer, Y. Shi, F. Zhang, M. Snedaker, K. Ding, M. Moskovits, G.J. Snyder, and G.D. Stucky, ACS Nano, 5, 3158 (2011).
- Y.M. Lin, X. Sun and M.S. Dresselhaus, Phys. Rev. B, 62, 4610 (2000).
- G.Q. Zhang, Q.X. Yu, W. Wang and X.G. Li, Adv. Mater., 22, 1959 (2010).
- B.Y. Yoo, C.-K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.-P. Fleurial and N.V. Myung, Electrochim. Acta, 50, 4371 (2005).
- M.S. Martin-Gonzalez, A. Prieto, R. Gronsky, T. Sands and A. Stacy, J. Electrochem. Soc., 149, C546 (2002)
References
L.E. Bell, Science, 321, 1457 (2008).
A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar and P. Yang, Nature, 451, 163 (2008).
T.C. Harman, P.J. Taylor, M.P. Walsh and B.E. LaForge, Science, 297, 2229 (2002).
W. Wang, J. Goebl, L. He, S. Aloni, Y. Hu, L. Zhen and Y. Yin, J. Am. Chem. Soc., 132, 17316 (2010).
L.D. Hicks, T.C. Harman, X. Sun and M.S. Dresselhaus, Phys. Rev. B, 53, R10493 (1996).
J.P. Heremans, C.M. Thrush and D.T. Morelli, Phys. Rev. B, 70, 115334 (2004).
K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis and M.G. Kanatzidis, Science, 303, 818 (2004).
Y. Zhang, H. Wang, S. Kraemer, Y. Shi, F. Zhang, M. Snedaker, K. Ding, M. Moskovits, G.J. Snyder, and G.D. Stucky, ACS Nano, 5, 3158 (2011).
Y.M. Lin, X. Sun and M.S. Dresselhaus, Phys. Rev. B, 62, 4610 (2000).
G.Q. Zhang, Q.X. Yu, W. Wang and X.G. Li, Adv. Mater., 22, 1959 (2010).
B.Y. Yoo, C.-K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.-P. Fleurial and N.V. Myung, Electrochim. Acta, 50, 4371 (2005).
M.S. Martin-Gonzalez, A. Prieto, R. Gronsky, T. Sands and A. Stacy, J. Electrochem. Soc., 149, C546 (2002)