Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal Reduction of CoIII(pn)2Cl(L)2+-Fe(II) Ions in Aqueous-Organic Solvent Medium via Outer-Sphere Electron Transfer Approach
Corresponding Author(s) : M. Soundarrajan
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Medium imparts changes in redox reactions of metal complexes. That is, solvent plays an important role in trapping the exchanging electron on one site similar to that of intramolecular structural changes. Especially in ionic reactions, ion can be thought of creating a polarization field in the surrounding solvent. The rationality behind the proposal of the kinetics was detailed by fit the data in correlation equation involving linear and multiple Grunwald-Winstein plot, Swain’s dual linear relationship and Kamlet-Taft’s equations. The kinetic inferences of outer-sphere electron transfer reactions of cobalt(III) aryl amine complexes (CoIII(pn)2Cl(L)2+ where L = RC6H5NH2, R = m-OCH3, p-F and H) with MeOH/ dioxane solvent content were explored at different temperatures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces, Blackwell Publishing: UK, p. 272 (2006).
- J. Hao and W. Shi, Chin. J. Catal., 39, 1157 (2018); https://doi.org/10.1016/S1872-2067(18)63073-6.
- D.W. Hatchett, T. Quy, N. Goodwin and N.M. Millick, Electrochim. Acta, 251, 699 (2017); https://doi.org/10.1016/j.electacta.2017.08.120.
- C.C. Thompson Jr. and P.A.D. Maine, J. Phys. Chem., 69, 2766 (1965); https://doi.org/10.1021/j100892a048.
- G. Wilkinson, R.D. Gillard and J.A. McCleverty, Comprehensive Coordination Chemistry-I, Pergamon Press, p. 503 (1987).
- A.R. Katritzky, D.C. Fara, H. Yang, K. Tämm, T. Tamm and M. Karelson, Chem. Rev., 104, 175 (2004); https://doi.org/10.1021/cr020750m.
- R. Dayanandhan and K. Subramani, Asian J. Chem., 29, 1948 (2017); https://doi.org/10.14233/ajchem.2017.20650.
- K. Anbalagan, K.A. Danishad and S.P.R. Poonkodi, Indian J. Chem., 42A, 1040 (2003).
- S.P.R. Poonkodi and K. Anbalagan, Transition Met. Chem., 26, 212 (2001); https://doi.org/10.1023/A:1007151619729.
- K. Anbalagan and I.S. Lydia, J. Phys. Org. Chem., 24, 45 (2011); https://doi.org/10.1002/poc.1700.
- K. Anbalagan, T. Geethalakshmi and S.P.R. Poonkodi, J. Phys. Chem. A, 107, 1918 (2003); https://doi.org/10.1021/jp022170z.
- K. Anbalagan and S.P.R. Poonkodi, Inorg. Chim. Acta, 359, 1357 (2006); https://doi.org/10.1016/j.ica.2005.11.045.
- J.C. Bailar Jr. and L.B. Clapp, J. Am. Chem. Soc., 67, 171 (1945); https://doi.org/10.1021/ja01218a006.
- J.C. Bailer and C.L. Rollinson, Inorg. Synth., 22, 222 (1946).
- A.C. Dash, A.K. Patnaik and C.S. Bramha, Indian. J. Chem., 36A, 260 (1997).
- C. Comuzzi, A. Melchior, P. Polese, R. Portanova and M. Tolazzi, Eur. J. Inorg. Chem., 8, 2194 (2002); https://doi.org/10.1002/1099-0682(200208)2002:8<2194::AID-EJIC2194>3.0.CO;2-T.
- P. Corio and J.C. Rubim, J. Phys. Chem., 99, 13217 (1995); https://doi.org/10.1021/j100035a028.
- L.J. Cavichiolo, T. Hasegawa and F.S. Nunes, Spectrochim. Acta A Mol. Biomol. Spectrosc., 64, 161 (2006); https://doi.org/10.1016/j.saa.2005.07.011.
- E.M. Kosower, J. Am. Chem. Soc., 80, 3253 (1958); https://doi.org/10.1021/ja01546a020.
- R. Stewart and M.M. Mocek, Can. J. Chem., 41, 1160 (1963); https://doi.org/10.1139/v63-164.
- L.D. Stephen, Rasayan J. Chem., 11, 155 (2018).
- W.F. Prow, S.K. Garmestani and R.D. Farina, Inorg. Chem., 20, 1297 (1981); https://doi.org/10.1021/ic50218a066.
- E.S. Amis, Solvent Effects on Reaction Rates and Mechanism, Academic Press: New York, (1967).
- E.S. Amis and J.F. Hinton, Solvent Effect on Chemical Phenomena, Academic Press: New York (1973).
- I.S. Koo, J.M. Cho, S.K. An, K. Yang, J.P. Lee and I. Lee, Bull. Korean Chem. Soc., 24, 431 (2003); https://doi.org/10.5012/bkcs.2003.24.4.431.
- C.G. Swain, M.S. Swain, A.L. Powell and S. Alunni, J. Am. Chem. Soc., 105, 502 (1983); https://doi.org/10.1021/ja00341a033.
- T. Kavitha, S. Haider, T. Kamal and M. Ul-Islam, J. Alloys Comp., 704, 296 (2017); https://doi.org/10.1016/j.jallcom.2017.01.306.
- W.D.G. Nunes, J.A. Teixeira, B. Ekawa, A.L.C.S. do Nascimento, M. Ionashiro and F.J. Caires, Thermochim. Acta, 666, 156 (2018); https://doi.org/10.1016/j.tca.2018.06.010.
- M.J. Kamlet, J.M. Abboud, M.H. Abraham and R.W. Taft, J. Org. Chem., 48, 2877 (1983); https://doi.org/10.1021/jo00165a018.
- S.P. Luo, Q.X. Peng, J. Liu and S.Z. Zhan, Polyhedron, 139, 44 (2018); https://doi.org/10.1016/j.poly.2017.10.010.
References
H.Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces, Blackwell Publishing: UK, p. 272 (2006).
J. Hao and W. Shi, Chin. J. Catal., 39, 1157 (2018); https://doi.org/10.1016/S1872-2067(18)63073-6.
D.W. Hatchett, T. Quy, N. Goodwin and N.M. Millick, Electrochim. Acta, 251, 699 (2017); https://doi.org/10.1016/j.electacta.2017.08.120.
C.C. Thompson Jr. and P.A.D. Maine, J. Phys. Chem., 69, 2766 (1965); https://doi.org/10.1021/j100892a048.
G. Wilkinson, R.D. Gillard and J.A. McCleverty, Comprehensive Coordination Chemistry-I, Pergamon Press, p. 503 (1987).
A.R. Katritzky, D.C. Fara, H. Yang, K. Tämm, T. Tamm and M. Karelson, Chem. Rev., 104, 175 (2004); https://doi.org/10.1021/cr020750m.
R. Dayanandhan and K. Subramani, Asian J. Chem., 29, 1948 (2017); https://doi.org/10.14233/ajchem.2017.20650.
K. Anbalagan, K.A. Danishad and S.P.R. Poonkodi, Indian J. Chem., 42A, 1040 (2003).
S.P.R. Poonkodi and K. Anbalagan, Transition Met. Chem., 26, 212 (2001); https://doi.org/10.1023/A:1007151619729.
K. Anbalagan and I.S. Lydia, J. Phys. Org. Chem., 24, 45 (2011); https://doi.org/10.1002/poc.1700.
K. Anbalagan, T. Geethalakshmi and S.P.R. Poonkodi, J. Phys. Chem. A, 107, 1918 (2003); https://doi.org/10.1021/jp022170z.
K. Anbalagan and S.P.R. Poonkodi, Inorg. Chim. Acta, 359, 1357 (2006); https://doi.org/10.1016/j.ica.2005.11.045.
J.C. Bailar Jr. and L.B. Clapp, J. Am. Chem. Soc., 67, 171 (1945); https://doi.org/10.1021/ja01218a006.
J.C. Bailer and C.L. Rollinson, Inorg. Synth., 22, 222 (1946).
A.C. Dash, A.K. Patnaik and C.S. Bramha, Indian. J. Chem., 36A, 260 (1997).
C. Comuzzi, A. Melchior, P. Polese, R. Portanova and M. Tolazzi, Eur. J. Inorg. Chem., 8, 2194 (2002); https://doi.org/10.1002/1099-0682(200208)2002:8<2194::AID-EJIC2194>3.0.CO;2-T.
P. Corio and J.C. Rubim, J. Phys. Chem., 99, 13217 (1995); https://doi.org/10.1021/j100035a028.
L.J. Cavichiolo, T. Hasegawa and F.S. Nunes, Spectrochim. Acta A Mol. Biomol. Spectrosc., 64, 161 (2006); https://doi.org/10.1016/j.saa.2005.07.011.
E.M. Kosower, J. Am. Chem. Soc., 80, 3253 (1958); https://doi.org/10.1021/ja01546a020.
R. Stewart and M.M. Mocek, Can. J. Chem., 41, 1160 (1963); https://doi.org/10.1139/v63-164.
L.D. Stephen, Rasayan J. Chem., 11, 155 (2018).
W.F. Prow, S.K. Garmestani and R.D. Farina, Inorg. Chem., 20, 1297 (1981); https://doi.org/10.1021/ic50218a066.
E.S. Amis, Solvent Effects on Reaction Rates and Mechanism, Academic Press: New York, (1967).
E.S. Amis and J.F. Hinton, Solvent Effect on Chemical Phenomena, Academic Press: New York (1973).
I.S. Koo, J.M. Cho, S.K. An, K. Yang, J.P. Lee and I. Lee, Bull. Korean Chem. Soc., 24, 431 (2003); https://doi.org/10.5012/bkcs.2003.24.4.431.
C.G. Swain, M.S. Swain, A.L. Powell and S. Alunni, J. Am. Chem. Soc., 105, 502 (1983); https://doi.org/10.1021/ja00341a033.
T. Kavitha, S. Haider, T. Kamal and M. Ul-Islam, J. Alloys Comp., 704, 296 (2017); https://doi.org/10.1016/j.jallcom.2017.01.306.
W.D.G. Nunes, J.A. Teixeira, B. Ekawa, A.L.C.S. do Nascimento, M. Ionashiro and F.J. Caires, Thermochim. Acta, 666, 156 (2018); https://doi.org/10.1016/j.tca.2018.06.010.
M.J. Kamlet, J.M. Abboud, M.H. Abraham and R.W. Taft, J. Org. Chem., 48, 2877 (1983); https://doi.org/10.1021/jo00165a018.
S.P. Luo, Q.X. Peng, J. Liu and S.Z. Zhan, Polyhedron, 139, 44 (2018); https://doi.org/10.1016/j.poly.2017.10.010.