Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Cyclodextrin-Modified Multi-Walled Carbon Nanotubes Through Acylamide Bond and Its Application in Capturing b-Naphthol from Wastewater
Corresponding Author(s) : Xian-Wen Wei
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
Multi-walled carbon nanotubes (MWNTs) were covalently modified with water-soluble b-cyclodextrin (b-CD) through acylamide bond. The products cyclodextrin modified multi-walled carbon nanotubes [MWNTs-CO-NH-(CH2)2-NH-CD] were characterized by 1H NMR, FT-IR spectroscopy and thermogravimetric analysis. The solubility of MWNTs-CO-NH-(CH2)2-NH-CD in water was 336.4 mg/L and no precipitates were observed after 18 months. The fluorescence spectra proved that the MWNTs-CO-NH-(CH2)2-NH-CD as a spectral probe can be used in the molecular recognition of b-naphthol (b-NOH) and the effective association constant (Ka) was calculated 1.27×104 from fluorescence spectra. By centrifugated, the b-naphthol could be separated from MWNTs-CO-NH-(CH2)2-NH-CD, collected and reused circularly. The results showed that the MWNTs-CO-NH-(CH2)2-NH-CD can be used to capture the aromatic pollutant such as b-naphthol from wastewater. This study widened the application of nanosupramolecule materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Iijima, Nature, 354, 56 (1991).
- Y.P. Sun, K. Fu, Y. Lin and W. Huang, Acc. Chem. Res., 35, 1096 (2002).
- P. Avouris, Acc. Chem. Res., 35, 1026 (2002).
- P.M. Ajayan, Chem. Rev., 99, 1787 (1999).
- M. Wu, G.Z. Yang, M. Wang, W.Z. Wang, W.D. Zhang, J.C. Feng and T.X. Liu, Mater. Chem. Phys., 109, 547 (2008).
- F.H. Wang, T.C. Lin, S.D. Tzeng and C.T. Chou, Appl. Surf. Sci., 256, 7600 (2010).
- N. Karousis and N. Tagmatarchis, Chem. Rev., 110, 5366 (2010).
- R.P. Bonomo, V. Cucinotta, F. D'Alessandro, G. Impellizzeri, G. Maccarrone, G. Vecchio and E. Rizzarelli, Inorg. Chem., 30, 2708 (1991).
- B.L. May, S.D. Kean, C.J. Easton and S.F. Lincoln, J. Chem. Soc. Perkin Trans. I, 3157 (1997).
- F.T. Tat, Z.G. Zhou, S. MacMahon, F. Song, A.L. Rheingold, L. Echegoyen, D.I. Schuster and S.R. Wilson, J. Org. Chem., 69, 4602 (2004).
- S.L. Zhang, Z. Du and G.K. Li, Anal. Chem., 83, 7531 (2011).
References
S. Iijima, Nature, 354, 56 (1991).
Y.P. Sun, K. Fu, Y. Lin and W. Huang, Acc. Chem. Res., 35, 1096 (2002).
P. Avouris, Acc. Chem. Res., 35, 1026 (2002).
P.M. Ajayan, Chem. Rev., 99, 1787 (1999).
M. Wu, G.Z. Yang, M. Wang, W.Z. Wang, W.D. Zhang, J.C. Feng and T.X. Liu, Mater. Chem. Phys., 109, 547 (2008).
F.H. Wang, T.C. Lin, S.D. Tzeng and C.T. Chou, Appl. Surf. Sci., 256, 7600 (2010).
N. Karousis and N. Tagmatarchis, Chem. Rev., 110, 5366 (2010).
R.P. Bonomo, V. Cucinotta, F. D'Alessandro, G. Impellizzeri, G. Maccarrone, G. Vecchio and E. Rizzarelli, Inorg. Chem., 30, 2708 (1991).
B.L. May, S.D. Kean, C.J. Easton and S.F. Lincoln, J. Chem. Soc. Perkin Trans. I, 3157 (1997).
F.T. Tat, Z.G. Zhou, S. MacMahon, F. Song, A.L. Rheingold, L. Echegoyen, D.I. Schuster and S.R. Wilson, J. Org. Chem., 69, 4602 (2004).
S.L. Zhang, Z. Du and G.K. Li, Anal. Chem., 83, 7531 (2011).