Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of Electroless Deposited Ni-Zn-P-TiO2(N) Composite Coating
Corresponding Author(s) : Zhu Shao-Feng
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
Nitrogen doped nano anatase TiO2 particles were prepared by nitriding treatment. The Ni-Zn-P-TiO2(N) composite coatings were prepared by adding nano TiO2(N) to electroless plating Ni-Zn-P alloy bath. The composite coatings were characterized and tested. The results show that, the maximum deposition rate occurs at 1 g dm-3 content of TiO2(N). The as-plated Ni-Zn-P-TiO2(N) composite coating consists face-centered-cubic Ni-Zn-P alloy and anatase type TiO2(N). The percentage weight of zinc, phosphorus and titanium in the composite are 6.94, 8.15 and 2.56 % respectively. The Ni-Zn-P-nano TiO2(N) composite coatings have higher hardness value, better erosion property and photodegradation effect than those of Ni-Zn-P-TiO2 composite coatings.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Yamashita, H. Nose, Y. Kuwahara, Y. Nishida, S. Yuan and K. Mori, Appl. Catal. A, 350, 164 (2008).
- Q. Deng, D.L. Liao and X.Y. Xiao, Mater. Rev., 17, 82 (2003).
- S. Pilkenton, S.J. Hwang and D. Raflery, J. Phys. Chem. B, 103, 11152 (1999).
- J.-M. Herrmann, H. Tahiri, C. Guillard and P. Pichat, Catal Today, 54, 131 (1999).
- O. Zhe and H. Jin, Langmuir, 16, 6216 (2000).
- D. Takenori and I. Kiyohisa, J. Electrochem. Soc., 147, 2263 (2000).
- J. Novakovic and P. Vassiliou, Electrochim. Acta, 54, 2499 (2009).
- L.Z. Song, Y.N. Wang, W.Z. Lin and Q. Liu, Surf. Coat. Technol., 202, 5146 (2008).
- X.M. Huang, L.H. Qian, Y.C. Wu and H. Zhu, Metallic Funct. Mater., 11, 15 (2004).
- F. Peng, Y.Q. Ren and J.G. Lei, Mod. Chem. Ind., 22, 108 (2002).
- C. Liu, X. Tang, C. Mo and Z. Qiang, J. Solid State Chem., 181, 913 (2008).
- E. Valova, I. Georgiev, S. Armyanov, J.-L. Delplancke, D. Tachev, Ts. Tsacheva and J. Dille, J. Electrochem. Soc., 148, C266 (2001).
- S.F. Zhu and Y.C. Wu, Adv. Mater. Res., 189-193, 455 (2011).
References
H. Yamashita, H. Nose, Y. Kuwahara, Y. Nishida, S. Yuan and K. Mori, Appl. Catal. A, 350, 164 (2008).
Q. Deng, D.L. Liao and X.Y. Xiao, Mater. Rev., 17, 82 (2003).
S. Pilkenton, S.J. Hwang and D. Raflery, J. Phys. Chem. B, 103, 11152 (1999).
J.-M. Herrmann, H. Tahiri, C. Guillard and P. Pichat, Catal Today, 54, 131 (1999).
O. Zhe and H. Jin, Langmuir, 16, 6216 (2000).
D. Takenori and I. Kiyohisa, J. Electrochem. Soc., 147, 2263 (2000).
J. Novakovic and P. Vassiliou, Electrochim. Acta, 54, 2499 (2009).
L.Z. Song, Y.N. Wang, W.Z. Lin and Q. Liu, Surf. Coat. Technol., 202, 5146 (2008).
X.M. Huang, L.H. Qian, Y.C. Wu and H. Zhu, Metallic Funct. Mater., 11, 15 (2004).
F. Peng, Y.Q. Ren and J.G. Lei, Mod. Chem. Ind., 22, 108 (2002).
C. Liu, X. Tang, C. Mo and Z. Qiang, J. Solid State Chem., 181, 913 (2008).
E. Valova, I. Georgiev, S. Armyanov, J.-L. Delplancke, D. Tachev, Ts. Tsacheva and J. Dille, J. Electrochem. Soc., 148, C266 (2001).
S.F. Zhu and Y.C. Wu, Adv. Mater. Res., 189-193, 455 (2011).