Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics of Oxidation Inhibition of Sodium Sulphite in Wet Flue Gas Desulphurization Process
Corresponding Author(s) : Jun Lu
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
The effect of several inhibitors on the oxidation rate of sodium sulphite was determined by both intrinsic and macroscopic experiments using self-designed bath reactor. The results indicated that ethanol is the most suitable inhibitor for wet flue gas desulphurization due to its low cost and non-toxicity. The oxidation kinetics of sodium sulphite inhibited by ethanol was studied using stirred bubbling reactor by varying concentration of sodium sulphite and ethanol, air flow rate and temperature. The reaction orders of all regents and the apparent activation energy of the reaction were achieved. Finally, a kinetic model was established based on the experimental results, which would be useful for the process optimization of the wet flue gas desulfurization systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Gao, H.L. Ding, Z. Du, Z.L. Wu, M.X. Fang, Z.Y. Luo and K.F. Cen, Appl. Energy, 87, 2647 (2010).
- J.S. Wang and E.J. Anthony, Appl. Energy, 85, 73 (2008).
- S. Cui, L.D. Wang, S.Q. Hao and L.X. Du, In Proceedings of International Conference on Future Energy, Environment and Materials, Energy Procedia, CN, pp. 2060-2066 (2012).
- J. Kaminski, Appl. Energy, 75, 165 (2003).
- J.H. Zhou, W. Li and W.D. Xiao, Chem. Eng. Sci., 55, 5637 (2000).
- J.S. Mo, Z.B. Wu and W.R. Zhao, J. Environ. Sci., 19, 226 (2007).
- S. Bengtsson and L. Bjerle, Chem. Eng. Sci., 53, 1973 (1998).
- L.D. Wang and Y. Zhao, Chem. Eng. J., 136, 221 (2008).
- Z.G. Shen, S.P. Guo and J. Lu, Ind. Eng. Chem. Res., 51, 4192 (2012).
- V. Linek and V. Vacek, Chem. Eng. Sci., 75, 1747 (1981).
- L. Sipos, J. Chem. Educ., 75, 1603 (1998).
- Y. Zhao, L.D. Wang and X.M. Wang, J. Environ. Sci., 17, 483 (2005).
- L.D. Wang, Y.L. Ma and Y. Zhao, Ind. Eng. Chem. Res., 48, 4307 (2009).
- Y.G. Zuo and H. Chen, Talanta, 59, 875 (2003).
- L.D. Wang, Y.L. Ma, J.M. Hao and G. Yuan, Acta Chim. Sin., 69, 1160 (2011).
- J.C.S. Chang and T.G. Brna, Environ. Prog., 5, 225 (1986).
References
X. Gao, H.L. Ding, Z. Du, Z.L. Wu, M.X. Fang, Z.Y. Luo and K.F. Cen, Appl. Energy, 87, 2647 (2010).
J.S. Wang and E.J. Anthony, Appl. Energy, 85, 73 (2008).
S. Cui, L.D. Wang, S.Q. Hao and L.X. Du, In Proceedings of International Conference on Future Energy, Environment and Materials, Energy Procedia, CN, pp. 2060-2066 (2012).
J. Kaminski, Appl. Energy, 75, 165 (2003).
J.H. Zhou, W. Li and W.D. Xiao, Chem. Eng. Sci., 55, 5637 (2000).
J.S. Mo, Z.B. Wu and W.R. Zhao, J. Environ. Sci., 19, 226 (2007).
S. Bengtsson and L. Bjerle, Chem. Eng. Sci., 53, 1973 (1998).
L.D. Wang and Y. Zhao, Chem. Eng. J., 136, 221 (2008).
Z.G. Shen, S.P. Guo and J. Lu, Ind. Eng. Chem. Res., 51, 4192 (2012).
V. Linek and V. Vacek, Chem. Eng. Sci., 75, 1747 (1981).
L. Sipos, J. Chem. Educ., 75, 1603 (1998).
Y. Zhao, L.D. Wang and X.M. Wang, J. Environ. Sci., 17, 483 (2005).
L.D. Wang, Y.L. Ma and Y. Zhao, Ind. Eng. Chem. Res., 48, 4307 (2009).
Y.G. Zuo and H. Chen, Talanta, 59, 875 (2003).
L.D. Wang, Y.L. Ma, J.M. Hao and G. Yuan, Acta Chim. Sin., 69, 1160 (2011).
J.C.S. Chang and T.G. Brna, Environ. Prog., 5, 225 (1986).