Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electric Conductivity in Aqueous Solution of NaCl + Methanol Under External Microwave Field by Non-equilibrium Molecular Dynamics Simulation
Corresponding Author(s) : Jin-Cheng Wei
Asian Journal of Chemistry,
Vol. 25 No. 9 (2013): Vol 25 Issue 9
Abstract
Nonequilibrium molecular dynamics simulations are performed to investigate the effects of an external microwave field on aqueous solution of NaCl + methanol at different temperatures. The microwave wave propagates in the z-axis direction with a frequency of 2.45 GHz and the intensity of the microwave field is 3 × 105 V/m. The results indicate that as the temperature of the electrolyte solution increased, the diffusion coefficient gradually decreased, but the electric conductivity gradually increased. In addition, all three will be increased, when the temperature increased. But the value of them will be reduced when microwave field is applied.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.R. Peterson, Rev. Chem. Intermed., 20, 93 (1994).
- S. Sudo, N. Shinyashiki, Y. Kitsuki and S. Yagihara, J. Phys. Chem. A, 106, 458 (2002).
- S. Chowdhuri and A. Chandra, J. Chem. Phys., 115, 3732 (2001).
- K.M. Huang, X.Q. Yang, W. Hua, G.Z. Jia and L.J. Yang, New J. Chem., 33, 1486 (2009).
- D.H. Jung, J.H. Yang and M.S. Jhon, Chem. Phys., 244, 331 (1999).
- M.J. Purdue, J.M.D. MacElroy and D.F. O'Shea, J. Chem. Phys., 125, 114902 (2006).
- M. Kiseleva and K. Heinzinger, J. Chem. Phys., 105, 650 (1996).
- K.T. Chang and C.I. Weng, Mol. Phys., 106, 2515 (2008).
- SH. Lee, J. Phys. Chem., 100, 1420 (1996).
- L.J. Yang, K.M. Huang and X.Q. Yang, J. Phys. Chem. A, 114, 1185 (2010).
- H.N. Chen and A.V. Gregory, J. Phys. Chem. B, 114, 333 (2010).
- D. Lawrence, J. Phys. Chem., 76, 2257 (1972).
References
E.R. Peterson, Rev. Chem. Intermed., 20, 93 (1994).
S. Sudo, N. Shinyashiki, Y. Kitsuki and S. Yagihara, J. Phys. Chem. A, 106, 458 (2002).
S. Chowdhuri and A. Chandra, J. Chem. Phys., 115, 3732 (2001).
K.M. Huang, X.Q. Yang, W. Hua, G.Z. Jia and L.J. Yang, New J. Chem., 33, 1486 (2009).
D.H. Jung, J.H. Yang and M.S. Jhon, Chem. Phys., 244, 331 (1999).
M.J. Purdue, J.M.D. MacElroy and D.F. O'Shea, J. Chem. Phys., 125, 114902 (2006).
M. Kiseleva and K. Heinzinger, J. Chem. Phys., 105, 650 (1996).
K.T. Chang and C.I. Weng, Mol. Phys., 106, 2515 (2008).
SH. Lee, J. Phys. Chem., 100, 1420 (1996).
L.J. Yang, K.M. Huang and X.Q. Yang, J. Phys. Chem. A, 114, 1185 (2010).
H.N. Chen and A.V. Gregory, J. Phys. Chem. B, 114, 333 (2010).
D. Lawrence, J. Phys. Chem., 76, 2257 (1972).