Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of Ba1-xSrxTiO3 by Sol-Gel Method
Corresponding Author(s) : Hamed Alwan Gatea
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Barium strontium titanate (BST) with formula (Ba1-xSrxTiO3) has been synthesized by sol-gel method with different stoichiometric compositions (x = 0.3, 0.4, 0.5, 0.6). The raw materials which used to prepare compounds are (Ba,Sr) acetate as a source (Ba,Sr) and titanate isopropoxide source. The FE-SEM images showed that the particles size reduced from 464 to 13 nm when strontium concentration increased from 0.3 to 0.6. The X-ray diffraction studies have confirmed that Ba0.7Sr0.3TiO3 sample have the tetragonal phase while remaining samples have a cubic phase. The intensity of the major peaks were decreased and shifted toward higher 2θ angles when Sr2+ ions increases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Dogan, H. Lin, M. Guilloux-Viry and O. Peña, Sci. Technol. Adv. Mater., 16, 020301 (2015); https://doi.org/10.1088/1468-6996/16/2/020301.
- V. Somani and S.J. Kalita, J. Electroceram., 18, 57 (2007); https://doi.org/10.1007/s10832-007-9008-7.
- M.E. Azim Araghi, N. Shaban and M. Bahar, Mater. Sci. Poland, 34, 63 (2016); https://doi.org/10.1515/msp-2016-0020.
- P.K. Sharma, G.L. Messing and D.K. Agrawal, Thin Solid Films, 491, 204 (2005); https://doi.org/10.1016/j.tsf.2004.08.171.
- A. Selmi, O. Khaldi, M. Mascot, F. Jomni and J.C. Carru, J. Mater. Sci. Mater. Electron., 27, 11299 (2016); https://doi.org/10.1007/s10854-016-5253-3.
- F.M. Pontes, E. Leite, D. Pontes, E. Longo, S. Mergulhão, E.M.S. Santos, P.S. Pizani, F. Lanciotti Jr., T.M. Boschi and J.A. Varela, J. Appl. Phys., 91, 5972 (2002); https://doi.org/10.1063/1.1466526.
- J. Zhao, X. Wang, R. Chen and L. Li, Mater. Lett., 59, 2329 (2005); https://doi.org/10.1016/j.matlet.2005.02.075.
- S. Kribalis, P.E. Tsakiridis, C. Dedeloudis and E. Hristoforou, J. Optoelectron. Adv. Mater., 8, 1475 (2006).
- P.M. Kshirsagar, P.P. Khirade, D.N. Bhoyar, S.J. Shukla and K.M. Jadhav, Int. J. Innov. Sci. Eng. Technol., 4, 5 (2017).
- R.S. Roth, J. Res. Natl. Bur. Stand., 58, 75 (1957); https://doi.org/10.6028/jres.058.010.
- Y. Xu, Ferroelectric Materials and their Application, University of California, Los Angeles, USA, Published by North-Holland, pp. 1–36 (1991).
- A.B. Catalan, J.V. Mantese, A.L. Micheli and N.W. Schubring, J. Appl. Phys., 76, 2541 (1994); https://doi.org/10.1063/1.357568.
- A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, A. Dutu, S. Antohe, C. Berbecaru, L. Georgescu, G. Stoica and H.V. Alexandru, Thin Solid Films, 515, 6289 (2007); https://doi.org/10.1016/j.tsf.2006.11.097.
- S.F. Mohiuddin, Ph.D. Thesis, Northern Illinois University, Illinois:USA (2011).
- D. Gao, D. Xiao, J. Bi, P. Yu, G. Yu, W. Zhang and J. Zhu, Mater. Trans., 44, 1320 (2003).
- S. Agarwal and G.L. Sharma, Sens. Actuators B Chem., 85, 205 (2002); https://doi.org/10.1016/S0925-4005(02)00109-0.
- Y.J. Wu, Y.H. Huang, N. Wang, J. Li, M.S. Fu and X.M. Chen, J. Eur. Ceram. Soc., 37, 2099 (2017); https://doi.org/10.1016/j.jeurceramsoc.2016.12.052.
- N. Golego, S.A. Studenikin and M. Cocivera, Chem. Mater., 10, 2000 (2000); https://doi.org/10.1021/cm980153+.
- F. Schrey, J. Am. Ceram. Soc., 48, 401 (1965); https://doi.org/10.1111/j.1151-2916.1965.tb14776.x.
- Y. Seo and S. Park, J. Korean Phys. Soc., 45, 1 (2004).
- T. Zhang and H. Ni, Sens. Actuators A Phys., 100, 252 (2002); https://doi.org/10.1016/S0924-4247(02)00139-5.
- A. Khalfallaoui, G. Vélu, L. Burgnies and J.E. Carru, IEEE Trans. Ultrason., Ferroelect. Frequ. Contr., 57, 1029 (2010); https://doi.org/10.1109/TUFFC.2010.1514.
- J. Zhai and H. Chen, J. Korean Ceram. Soc., 40, 380 (2003); https://doi.org/10.4191/kcers.2003.40.4.380.
- Y. Gao, V.V. Shvartsman, D. Gautam, M. Winterer and D.C. Lupascu, J. Am. Ceram. Soc., 97, 2139 (2014); https://doi.org/10.1111/jace.12933.
- U. Adem, Ph.D. Thesis, Middle East Technical University: Ankara, Turkey (2003).
- M.C. Gust, L.A. Momoda, N.D. Evans and M.L. Mecartney, J. Am. Ceram. Soc., 84, 1087 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb00794.x.
References
F. Dogan, H. Lin, M. Guilloux-Viry and O. Peña, Sci. Technol. Adv. Mater., 16, 020301 (2015); https://doi.org/10.1088/1468-6996/16/2/020301.
V. Somani and S.J. Kalita, J. Electroceram., 18, 57 (2007); https://doi.org/10.1007/s10832-007-9008-7.
M.E. Azim Araghi, N. Shaban and M. Bahar, Mater. Sci. Poland, 34, 63 (2016); https://doi.org/10.1515/msp-2016-0020.
P.K. Sharma, G.L. Messing and D.K. Agrawal, Thin Solid Films, 491, 204 (2005); https://doi.org/10.1016/j.tsf.2004.08.171.
A. Selmi, O. Khaldi, M. Mascot, F. Jomni and J.C. Carru, J. Mater. Sci. Mater. Electron., 27, 11299 (2016); https://doi.org/10.1007/s10854-016-5253-3.
F.M. Pontes, E. Leite, D. Pontes, E. Longo, S. Mergulhão, E.M.S. Santos, P.S. Pizani, F. Lanciotti Jr., T.M. Boschi and J.A. Varela, J. Appl. Phys., 91, 5972 (2002); https://doi.org/10.1063/1.1466526.
J. Zhao, X. Wang, R. Chen and L. Li, Mater. Lett., 59, 2329 (2005); https://doi.org/10.1016/j.matlet.2005.02.075.
S. Kribalis, P.E. Tsakiridis, C. Dedeloudis and E. Hristoforou, J. Optoelectron. Adv. Mater., 8, 1475 (2006).
P.M. Kshirsagar, P.P. Khirade, D.N. Bhoyar, S.J. Shukla and K.M. Jadhav, Int. J. Innov. Sci. Eng. Technol., 4, 5 (2017).
R.S. Roth, J. Res. Natl. Bur. Stand., 58, 75 (1957); https://doi.org/10.6028/jres.058.010.
Y. Xu, Ferroelectric Materials and their Application, University of California, Los Angeles, USA, Published by North-Holland, pp. 1–36 (1991).
A.B. Catalan, J.V. Mantese, A.L. Micheli and N.W. Schubring, J. Appl. Phys., 76, 2541 (1994); https://doi.org/10.1063/1.357568.
A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, A. Dutu, S. Antohe, C. Berbecaru, L. Georgescu, G. Stoica and H.V. Alexandru, Thin Solid Films, 515, 6289 (2007); https://doi.org/10.1016/j.tsf.2006.11.097.
S.F. Mohiuddin, Ph.D. Thesis, Northern Illinois University, Illinois:USA (2011).
D. Gao, D. Xiao, J. Bi, P. Yu, G. Yu, W. Zhang and J. Zhu, Mater. Trans., 44, 1320 (2003).
S. Agarwal and G.L. Sharma, Sens. Actuators B Chem., 85, 205 (2002); https://doi.org/10.1016/S0925-4005(02)00109-0.
Y.J. Wu, Y.H. Huang, N. Wang, J. Li, M.S. Fu and X.M. Chen, J. Eur. Ceram. Soc., 37, 2099 (2017); https://doi.org/10.1016/j.jeurceramsoc.2016.12.052.
N. Golego, S.A. Studenikin and M. Cocivera, Chem. Mater., 10, 2000 (2000); https://doi.org/10.1021/cm980153+.
F. Schrey, J. Am. Ceram. Soc., 48, 401 (1965); https://doi.org/10.1111/j.1151-2916.1965.tb14776.x.
Y. Seo and S. Park, J. Korean Phys. Soc., 45, 1 (2004).
T. Zhang and H. Ni, Sens. Actuators A Phys., 100, 252 (2002); https://doi.org/10.1016/S0924-4247(02)00139-5.
A. Khalfallaoui, G. Vélu, L. Burgnies and J.E. Carru, IEEE Trans. Ultrason., Ferroelect. Frequ. Contr., 57, 1029 (2010); https://doi.org/10.1109/TUFFC.2010.1514.
J. Zhai and H. Chen, J. Korean Ceram. Soc., 40, 380 (2003); https://doi.org/10.4191/kcers.2003.40.4.380.
Y. Gao, V.V. Shvartsman, D. Gautam, M. Winterer and D.C. Lupascu, J. Am. Ceram. Soc., 97, 2139 (2014); https://doi.org/10.1111/jace.12933.
U. Adem, Ph.D. Thesis, Middle East Technical University: Ankara, Turkey (2003).
M.C. Gust, L.A. Momoda, N.D. Evans and M.L. Mecartney, J. Am. Ceram. Soc., 84, 1087 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb00794.x.