Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Novel Inorganic-Organic Hybrid Material Based on Monosubstituted Keggin-Type Polyoxometalates by a Metal-Nitrogen of Covalent Bonding
Corresponding Author(s) : Guangdong Zhou
Asian Journal of Chemistry,
Vol. 25 No. 9 (2013): Vol 25 Issue 9
Abstract
A new inorganic-organic hybrid material Na(ANIH)4ANI[PW11Ni(ANI)O39]·12H2O (ANI = aniline) was prepared based on transition-metal monosubstituted keggin type polyoxometalates [PW11Ni(H2O)O39]5- as inorganic species and aniline as organic ligand by a covalent bonding of Ni-N. The as-prepared hybrid material was characterized by elemental analysis, IR spectroscopy, TG-DTA analyses, UV-visible spectra and X-ray photoelectron spectroscopy (XPS). Elemental analysis and TG-DTA results confirm the formula of the hybrid material. Experimental results of UV-VIS, IR and XPS approve that the Ni-N covalent bond is formed between the transition-metal in the Keggin-type anion [PW11Ni(H2O)O39]5- and the nitrogen atom of ANI and the ANIH+ exists as counter ion. Moreover, photocatalytic activity of the as-prepared hybrid material was investigated by photodegradation of dye rhodamine B under UV irradiation and the results showed that the hybrid material exhibited high photocatalytic activity for treatment of dye-containing wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Hasenknopf, K. Micoine, E. Lacôte, S. Thorimbert, M. Malacria and R. Thouvenot, Eur. J. Inorg. Chem., 5001 (2008).
- R. Tayebee, Asian. J. Chem., 21, 5791 (2009).
- C.C. Wang, Asian. J. Chem., 21, 4755, 4919 (2009).
- I. Bar-Nahum, J. Ettedgui, L. Konstantinovski, V. Kogan and R. Neumann, Inorg. Chem., 46, 5798 (2007).
- W. Qi and L.X. Wu, Polym. Int., 58, 1217 (2009).
- Y. Wei, B. Xu, C.L. Barnes and Z. Peng, J. Am. Chem. Soc., 123, 4083 (2001).
- I. Bar-Nahum, K.V. Narasimhulu, L. Weiner and R. Neumann, Inorg. Chem., 44, 4900 (2005).
- J.B. Strong, R. Ostrander, A.L. Rheingold and E.A. Maatta, J. Am. Chem. Soc., 116, 3601 (1994).
- W. Clegg, R.J. Errington, K.A. Fraser, S.A. Holmes and A. Schäfer, J. Chem. Soc. Chem. Commun., 4, 455 (1995).
- A. Proust, R. Thouvenot, M. Chaussade, F. Robert and P. Gouzerh, Inorg. Chim. Acta, 224, 81 (1994).
- D.E. Katsoulis, Chem. Rev., 98, 359 (1998).
- T.J.R. Weakley and S.A. Malik, J. Inorg. Nucl. Chem., 29, 2935 (1967).
- J.L. Hu, K.X. Li, W. Li, F.Y. Ma and Y.H. Guo, Appl. Catal. A, 364, 211 (2009).
- J.A. Gamelas, F.A.S. Couto, M.C.N. Trovao, A.M.V. Cavaleiro, J.A.S. Cavaleiro and J.D. Pedrosa de Jesus, Thermochim. Acta, 326, 165 (1999).
- J.C. Evans, Spectrochim. Acta, 16, 428 (1960).
- K. Fukaya, A. Srifa, E. Isikawa and H. Naruke, J. Mol. Struct., 979, 221 (2010).
- D.F. Li, Y.H. Guo, C.W. Hu, L. Mao and E.B. Wang, Appl. Catal. A, 235, 11 (2002).
- S.Z. Li, J.W. Zhao, P.T. Ma, J. Du, J.Y. Niu and J.P. Wang, Inorg. Chem., 48, 9819 (2009).
- S. Yau, Y.H. Lee, C.Z. Chang, L.J. Fan, Y.W. Yang and W.P. Dow, J. Phys. Chem. C, 113,13758 (2009).
- C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku and J.H. Lee, Mater. Lett., 65, 1371 (2011).
- S.Q. Li, C.X. Zhu, L. Tang and J.Q. Kan, Mater. Chem. Phys., 124, 168 (2010).
- L. Xu, M.Q. Li and E.B. Wang, Mater. Lett., 54, 303 (2002).
References
B. Hasenknopf, K. Micoine, E. Lacôte, S. Thorimbert, M. Malacria and R. Thouvenot, Eur. J. Inorg. Chem., 5001 (2008).
R. Tayebee, Asian. J. Chem., 21, 5791 (2009).
C.C. Wang, Asian. J. Chem., 21, 4755, 4919 (2009).
I. Bar-Nahum, J. Ettedgui, L. Konstantinovski, V. Kogan and R. Neumann, Inorg. Chem., 46, 5798 (2007).
W. Qi and L.X. Wu, Polym. Int., 58, 1217 (2009).
Y. Wei, B. Xu, C.L. Barnes and Z. Peng, J. Am. Chem. Soc., 123, 4083 (2001).
I. Bar-Nahum, K.V. Narasimhulu, L. Weiner and R. Neumann, Inorg. Chem., 44, 4900 (2005).
J.B. Strong, R. Ostrander, A.L. Rheingold and E.A. Maatta, J. Am. Chem. Soc., 116, 3601 (1994).
W. Clegg, R.J. Errington, K.A. Fraser, S.A. Holmes and A. Schäfer, J. Chem. Soc. Chem. Commun., 4, 455 (1995).
A. Proust, R. Thouvenot, M. Chaussade, F. Robert and P. Gouzerh, Inorg. Chim. Acta, 224, 81 (1994).
D.E. Katsoulis, Chem. Rev., 98, 359 (1998).
T.J.R. Weakley and S.A. Malik, J. Inorg. Nucl. Chem., 29, 2935 (1967).
J.L. Hu, K.X. Li, W. Li, F.Y. Ma and Y.H. Guo, Appl. Catal. A, 364, 211 (2009).
J.A. Gamelas, F.A.S. Couto, M.C.N. Trovao, A.M.V. Cavaleiro, J.A.S. Cavaleiro and J.D. Pedrosa de Jesus, Thermochim. Acta, 326, 165 (1999).
J.C. Evans, Spectrochim. Acta, 16, 428 (1960).
K. Fukaya, A. Srifa, E. Isikawa and H. Naruke, J. Mol. Struct., 979, 221 (2010).
D.F. Li, Y.H. Guo, C.W. Hu, L. Mao and E.B. Wang, Appl. Catal. A, 235, 11 (2002).
S.Z. Li, J.W. Zhao, P.T. Ma, J. Du, J.Y. Niu and J.P. Wang, Inorg. Chem., 48, 9819 (2009).
S. Yau, Y.H. Lee, C.Z. Chang, L.J. Fan, Y.W. Yang and W.P. Dow, J. Phys. Chem. C, 113,13758 (2009).
C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku and J.H. Lee, Mater. Lett., 65, 1371 (2011).
S.Q. Li, C.X. Zhu, L. Tang and J.Q. Kan, Mater. Chem. Phys., 124, 168 (2010).
L. Xu, M.Q. Li and E.B. Wang, Mater. Lett., 54, 303 (2002).