Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Hydrogen Bond on the n(CºN) Stretching Mode of Acetonitrile in the Binary Mixture (Acetonitrile + Water): A Combined Raman Spectroscopy and Theoretical Study
Corresponding Author(s) : Nan-Nan Wu
Asian Journal of Chemistry,
Vol. 25 No. 8 (2013): Vol 25 Issue 8
Abstract
Hydrogen bond in the binary mixture system of acetonitrile and water has been studied by using experimental Raman spectroscopy and quantum chemical theoretical calculations. Experimentally, the n(CºN) as a marker bond for the degree of hydrogen bond in this binary mixture (acetonitrile + water) has been monitored by Raman spectroscopy. Theoretically, the optimized structures, vibrational frequencies and stabilization energies of the neat acetontrile and the hydrogen-bonded CH3CN…HOH complexes are calculated at the B3LYP/6-311 + G(d,p), MP2/6-311+G(d,p) and CCSD/6-311+G(d,p) levels of theory, respectively. The results show that the wavenumber position of the CºN stretching mode is shifted to higher wavenumber due to the hydrogen bond and the change in the line width (full width half maximum, FWHM) have been explained for neat as well as binary mixtures with different concentrations, in terms of the concentration fluctuation and the microviscosity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.N. Shin, J.M. Wijnen, J.B.F.N. Engberts and A. Wakisaka, J. Phys. Chem. B, 106, 6014 (2002).
- J.B.F.N. Engberts and M.J. Blandamer, Chem. Commun., 1701 (2002).
- E. Rissi, E.E. Fileti and S. Canuto, Theor. Chem. Acc., 110, 360 (2003).
- S. Schlücker, J. Koster, R.K. Singh and B.P. Asthana, J. Phys. Chem. A, 111, 5185 (2007).
- C.L. Perrin and J.B. Nielson, Ann. Rev. Phys. Chem., 48, 511 (1997).
- R. Vaidyanathan, S. Natrajan and C.N.R. Rao, J. Mol. Struct., 608, 123 (2002).
- H. Lampert, W. Mikenda and A. Karpfen, J. Phys. Chem., 100, 7418 (1996).
- K.B. Borisenko, C.K. Bock and I. Hargittai, J. Phys. Chem., 100, 7426 (1996).
- A. Kovacs and I. Hargittai, Struct. Chem., 11, 193 (2000).
- M. Fores and S. Scheiner, Chem. Phys., 246, 65 (1999).
- A. Filarowski, T. Glowiaka and A. Koll, J. Mol. Struct., 484, 75 (1999).
- B.P. Asthana and W. Kiefer, Vibrational Spectra and Structure, Amsterdam: Elsevier, p. 67 (1992).
- S.L. Ouyang, Z.W. Li, Y.Z. Chen, Z.W. Men, N.N. Wu and C.L. Sun, Chem. Res. Chin. Univ., 27, 661 (2011).
- N.N. Wu, S.L. Ouyang, Z.W. Li, J.Y. Liu and S.Q. Gao, Chem. Res. Chin. Univ., 27, 693 (2011).
- P. Raghuvansh, S.K. Srivastava, R.K. Singh, B.P. Asthana and W. Kiefer, Phys. Chem. Chem. Phys., 6, 531 (2004).
- A.K. Ojha, S.K. Srivastava, R.K. Singh and B.P. Asthana, J. Phys. Chem. A, 110, 9849 (2006).
- M.J. Frisch, G.W. Truck, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, Jr. J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Boboul, B.B. Stefnov, G. Liu, A. Liaschenko, P. Piskorz, L. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 03, Revision A.1, Guassian, Inc., Pittsburgh PA (2003).
- S. Singh and P.J. Krueger, J. Raman Spectrosc., 13, 178 (1982).
- D.W. Oxtoby, Adv. Chem. Phys., 40, 1 (1979).
- A.F. Bondarev and A.I. Mardaeva, Opt. Spectrosc., 35, 67 (1973).
References
D.N. Shin, J.M. Wijnen, J.B.F.N. Engberts and A. Wakisaka, J. Phys. Chem. B, 106, 6014 (2002).
J.B.F.N. Engberts and M.J. Blandamer, Chem. Commun., 1701 (2002).
E. Rissi, E.E. Fileti and S. Canuto, Theor. Chem. Acc., 110, 360 (2003).
S. Schlücker, J. Koster, R.K. Singh and B.P. Asthana, J. Phys. Chem. A, 111, 5185 (2007).
C.L. Perrin and J.B. Nielson, Ann. Rev. Phys. Chem., 48, 511 (1997).
R. Vaidyanathan, S. Natrajan and C.N.R. Rao, J. Mol. Struct., 608, 123 (2002).
H. Lampert, W. Mikenda and A. Karpfen, J. Phys. Chem., 100, 7418 (1996).
K.B. Borisenko, C.K. Bock and I. Hargittai, J. Phys. Chem., 100, 7426 (1996).
A. Kovacs and I. Hargittai, Struct. Chem., 11, 193 (2000).
M. Fores and S. Scheiner, Chem. Phys., 246, 65 (1999).
A. Filarowski, T. Glowiaka and A. Koll, J. Mol. Struct., 484, 75 (1999).
B.P. Asthana and W. Kiefer, Vibrational Spectra and Structure, Amsterdam: Elsevier, p. 67 (1992).
S.L. Ouyang, Z.W. Li, Y.Z. Chen, Z.W. Men, N.N. Wu and C.L. Sun, Chem. Res. Chin. Univ., 27, 661 (2011).
N.N. Wu, S.L. Ouyang, Z.W. Li, J.Y. Liu and S.Q. Gao, Chem. Res. Chin. Univ., 27, 693 (2011).
P. Raghuvansh, S.K. Srivastava, R.K. Singh, B.P. Asthana and W. Kiefer, Phys. Chem. Chem. Phys., 6, 531 (2004).
A.K. Ojha, S.K. Srivastava, R.K. Singh and B.P. Asthana, J. Phys. Chem. A, 110, 9849 (2006).
M.J. Frisch, G.W. Truck, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, Jr. J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Boboul, B.B. Stefnov, G. Liu, A. Liaschenko, P. Piskorz, L. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 03, Revision A.1, Guassian, Inc., Pittsburgh PA (2003).
S. Singh and P.J. Krueger, J. Raman Spectrosc., 13, 178 (1982).
D.W. Oxtoby, Adv. Chem. Phys., 40, 1 (1979).
A.F. Bondarev and A.I. Mardaeva, Opt. Spectrosc., 35, 67 (1973).