Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chemical Evolution of Aminoacetonitrile to Glycine under Discharge onto Primitive Hydrosphere: Simulation Experiments Using Glow Discharge
Corresponding Author(s) : T. Munegumi
Asian Journal of Chemistry,
Vol. 28 No. 3 (2016): Vol 28 Issue 3
Abstract
Aminoacetonitrile is an important precursor of abiotic amino acids, as shown in the mechanism that was developed to explain the results of the Miller-type spark-discharge experiment. In present experimental setup, a spark discharge is generated in a simulated reducing atmosphere to yield hydrogen cyanide, aldehyde and ammonia; in a second step, a solution-phase reaction proceeds via aminoacetonitrile to give amino acids. However, when the same experiment is carried out in a non-reducing atmosphere, the yield of amino acids is very low. Contact glow discharge electrolysis onto the aqueous phase, which simulates an energy source for chemical evolution, converted aminoacetonitrile via glycinamide to glycine. The mechanism of glycinamide formation was explained by considering the addition of hydrogen and hydroxyl radicals to the C-N triple bond and subsequent transformation into the amide, which was then oxidized to the amino acid. This research suggests that amino acid amides and amino acids can be obtained through oxidation-reduction with H and OH radicals in the primitive hydrosphere whether under reducing or non-reducing conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Freeland, in ed.: A. B. Hughes, Terrestrial Amino Acids and their Evolution, In: Amino Acids, Peptides and Proteins in Organic Chemistry, Origins and Synthesis of Amino Acids, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Vol. 1, pp. 43-75 (2009).
- A. Brack, in eds.: P. Herdewijin and M. Volkan Kisakurek, From Interstellar Amino Acids to Prebiotic Catalytic Peptides: A Review, In: Origin of Life: Chemical Approach, Wiley-VCH Verlag GmbH & Co., KGaA, pp. 215-229 (2008).
- Z. Martin and M.A. Sephton, in ed.: A.B. Hughes, Extra terrestrial Amino Acids, in Amino Acids, Peptides and Proteins in Organic Chemistry, Origins and Synthesis of Amino Acids, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Vol. 1, pp. 3-42 (2009).
- S.L. Miller, Science, 117, 528 (1953); doi:10.1126/science.117.3046.528.
- S.L. Miller, J. Am. Chem. Soc., 77, 2351 (1955); doi:10.1021/ja01614a001.
- K. Harada, Molecular Evolution and Protobiology, Plenum Press, New York, p. 83 (1984).
- D.H. Abelson, Carnegie Inst. of Washington Year Book, vol. 53, 97 (1953–1954).
- M. Akaboshi, N. Fujii and R. Navarro-González, The Role of Radiation in the Origin and Evolution of Life, Kyoto University of Press, Japan (2000).
- G. Schlesinger and S.L. Miller, J. Mol. Evol., 19, 376 (1983); doi:10.1007/BF02101642.
- D.P. Summers, Orig. Life Evol. Biosph., 35, 299 (2005); doi:10.1007/s11084-005-2040-1.
- F. Tian, O.B. Toon, A.A. Parlov and H. De Streck, Science, 308, 1014 (2005); doi:10.1126/science.1106983.
- D. Trail, E.B. Watson and N.D. Tailby, Nature, 480, 79 (2011); doi:10.1038/nature10655.
- S.L. Miller and L.E. Orgel, The Origins of Life on the Earth, Prentice Hall Inc., New York (1974).
- S.L. Miller and J.E. Van Trump, in ed.: Y. Wolman, The Strecker Synthesis in the Primitive Ocean, In: Origin of Life, Reidel, Dordrecht, pp. 135-141 (1981).
- L.E. Snyder, Orig. Life Evol. Biosph., 27, 115 (1997); doi:10.1023/A:1006522230405.
- A.G. Csaszar, J. Am. Chem. Soc., 114, 9568 (1992); doi:10.1021/ja00050a041.
- P. Ehrenfreund, S.B. Charnley and O. Botta, in eds.: Eds. M. Livio, N. Reid and W. B. Sparks, Voyage from Dark Clouds to the Early Earth, In: Astrophysics of Life, Telescope Science Institute Symposium Series, Vol. 16, Cambridge University Press, pp. 1-20 (2005).
- S.B. Charnley, P. Ehrenfreund and Y.-J. Kuan, Spectrochim. Acta A, 57, 685 (2001); doi:10.1016/S1386-1425(00)00437-6.
- J.E. Elsila, J.P. Dworkin, M.P. Bernstein, M.P. Martin and S.A. Sandford, Astrophys. J., 660, 911 (2007); doi:10.1086/513141.
- V. Blagojevic, S. Petrie and D.K. Bohme, Mon. Not. R. Astron. Soc., 339, L7 (2003); doi:10.1046/j.1365-8711.2003.06351.x.
- J. Kissel and F.R. Krueger, Nature, 326, 755 (1987); doi:10.1038/326755a0.
- J. Crovisier, D. Bockelee-Morvan, P. Colom, N. Biver, D. Despois and D.C. Lis, Astron. Astrophys., 418, 1141 (2004); doi:10.1051/0004-6361:20035688.
- J.R. Cronin and S. Pizzarello, Adv. Space Res., 3, 5 (1983); doi:10.1016/0273-1177(83)90036-4.
- J.R. Cronin, S. Pizzarello and D.P. Cruikshank, in eds.: J.F. Kerridhe and M.S. Matthews, Organic Matter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets, In: Meteorites and the Early Solar System, University of Arizona Press, Tucson, AZ, pp. 819-857 (1988).
- J.R. Cronin and S. Chang, in eds.: J.M. Greenberg, C.X. Mendoza-Gomez and V. Pirronello, Organic Matter in Meteorites: Molecular Isotopic Analyses of the Murchison Meteorites, In: The Chemistry of Life’s Origins, Kluwer, Dordrecht, pp. 209-258 (1993).
- K. Kobayashi, T. Kasamatsu, T. Kaneko, J. Koike, T. Oshima, T. Saito, T. Yamamoto and H. Yanagawa, Adv. Space Res., 16, 21 (1995); doi:10.1016/0273-1177(95)00188-K.
- T. Kasamatsu, T. Kaneko, T. Saito and K. Kobayashi, Bull. Chem. Soc. Jpn., 70, 1021 (1997); doi:10.1246/bcsj.70.1021.
- M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper and L.J. Allamandola, Nature, 416, 401 (2002); doi:10.1038/416401a.
- G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack and J.M. Greenberg, Nature, 416, 403 (2002); doi:10.1038/416403a.
- R. Briggs, G. Ertem, J.P. Ferris, J.M. Greenberg, P.J. McCain, C.X. Mendoza-Gomez and W. Schutte, Orig. Life Evol. Biosph., 22, 287 (1992); doi:10.1007/BF01810858.
- C.F. Chyba and C. Sagan, Nature, 355, 125 (1992); doi:10.1038/355125a0.
- D.W. Sears, Mod. Geol., 5, 155 (1975).
- V.A. Basiuk and J. Douda, Planet. Space Sci., 47, 577 (1999); doi:10.1016/S0032-0633(98)00136-6.
- M.J. Genge, M.M. Grady and R. Hutchison, Geochim. Cosmochim. Acta, 61, 5149 (1997); doi:10.1016/S0016-7037(97)00308-6.
- G.J. Flynn, Icarus, 77, 287 (1989); doi:10.1016/0019-1035(89)90091-2.
- W.G. Love and D.E. Brownlee, Icarus, 89, 26 (1991); doi:10.1016/0019-1035(91)90085-8.
- F. Rodante, Thermochim. Acta, 200, 47 (1992); doi:10.1016/0040-6031(92)85105-5.
- F.J.M. Rietmeijer, Meteorit. Planet. Sci., 31, 237 (1996); doi:10.1111/j.1945-5100.1996.tb02018.x.
- K.A. Farley, S.G. Love and D.B. Patterson, Geochim. Cosmochim. Acta, 61, 2309 (1997); doi:10.1016/S0016-7037(97)00068-9.
- A. Greshake, W. Klöck, P. Arndt, M. Maetz, G.J. Flynn, S. Bajt and A. Bischoff, Meteorit. Planet. Sci., 33, 267 (1998); doi:10.1111/j.1945-5100.1998.tb01632.x.
- D.P. Glavin and J.L. Bada, Astrobiology, 1, 259 (2001); doi:10.1089/15311070152757456.
- G. Matrajt, D. Brownlee, M. Sadilek and L. Kruse, Meteorit. Planet. Sci., 41, 903 (2006); doi:10.1111/j.1945-5100.2006.tb00494.x.
- K. Harada, S. Suzuki and H. Ishida, Biosystems, 10, 247 (1978); doi:10.1016/0303-2647(78)90006-0.
- K. Harada, S. Suzuki, H. Ishida, M. Matsuyama and M. Tamura, in ed.: H. Noda, Amino Acid Synthesis by Contact Glow Discharge Electrolysis II, A Possible Route for Prebiotic Synthesis of Amino Acids, In: Origin of Life, pp. 141–151, Center for Academic Publication, Japan (1978).
- H. Hanafusa and S. Akabori, Bull. Chem. Soc. Jpn., 32, 626 (1959); doi:10.1246/bcsj.32.626.
- A. Belloche, K.M. Menten, C. Comito, H.S.P. Müller, P. Schilke, J. Ott, S. Thorwirth and C. Hieret, Astron. Astrophys., 482, 179 (2008); doi:10.1051/0004-6361:20079203.
- Y. Ito, T. Munegumi and K. Harada, Res. J. Pharm. Biol. Chem. Sci., 4, 1811 (2013).
- K. Harada and T. Iwasaki, Nature, 250, 426 (1974); doi:10.1038/250426a0.
- K. Harada, S. Igari, T. Munegumi, M. Takasaki and A. Shimoyama, Bull. Chem. Soc. Jpn., 64, 1776 (1991); doi:10.1246/bcsj.64.1776.
- T. Munegumi, Bull. Chem. Soc. Jpn., 87, 1208 (2014); doi:10.1246/bcsj.20140164.
- M. Takasaki and K. Harada, Tetrahedron, 41, 4463 (1985); doi:10.1016/S0040-4020(01)82340-1.
- B. Radziszewski, Dtsch. Chem. Ges., 18, 355 (1885); doi:10.1002/cber.18850180171.
- L. McMaster and F.B. Langreck, J. Am. Chem. Soc., 39, 103 (1917); doi:10.1021/ja02246a012.
- J.V. Murray and J.B. Cloke, J. Am. Chem. Soc., 56, 2749 (1934); doi:10.1021/ja01327a070.
- K.B. Wiberg, J. Am. Chem. Soc., 75, 3961 (1953); doi:10.1021/ja01112a025.
- G.P. Payne, P.H. Deming and P.H. Williams, J. Org. Chem., 26, 659 (1961); doi:10.1021/jo01062a004.
- G.P. Payne, J. Org. Chem., 26, 668 (1961); doi:10.1021/jo01062a006.
- Y. Sawaki and Y. Ogata, Bull. Chem. Soc. Jpn., 54, 793 (1981); doi:10.1246/bcsj.54.793.
- H. Hase and K. Harada, Viva Origino, 29, 61 (2001).
- P. Neta, Chem. Rev., 72, 533 (1972); doi:10.1021/cr60279a005.
- H. Buechler, R.E. Buehler and R. Cooper, J. Phys. Chem., 80, 1549 (1976); doi:10.1021/j100555a006.
- R.A. Witter and P. Neta, J. Org. Chem., 38, 484 (1973); doi:10.1021/jo00943a016.
- T. Munegumi, N. Nishi and K. Harada, J. Chem. Soc., 1689 (1990); doi:10.1039/C39900001689.
- C.L. Keller, J.D. Dalessandro, R.P. Hotz and A.R. Pinhas, J. Org. Chem., 73, 3616 (2008); doi:10.1021/jo7026905.
- D. Minakata, K. Li, P. Westerhoff and J. Crittenden, Environ. Sci. Technol., 43, 6220 (2009); doi:10.1021/es900956c.
- S. Mitroka, S. Zimmeck, D. Troya and J.M. Tanko, J. Am. Chem. Soc., 132, 2907 (2010); doi:10.1021/ja903856t.
- W.M. Garrison, Chem. Rev., 87, 381 (1987); doi:10.1021/cr00078a006.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross and W. Tsang, J. Phys. Chem. Ref. Data, 17, 513 (1988); doi:10.1063/1.555805.
References
S. Freeland, in ed.: A. B. Hughes, Terrestrial Amino Acids and their Evolution, In: Amino Acids, Peptides and Proteins in Organic Chemistry, Origins and Synthesis of Amino Acids, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Vol. 1, pp. 43-75 (2009).
A. Brack, in eds.: P. Herdewijin and M. Volkan Kisakurek, From Interstellar Amino Acids to Prebiotic Catalytic Peptides: A Review, In: Origin of Life: Chemical Approach, Wiley-VCH Verlag GmbH & Co., KGaA, pp. 215-229 (2008).
Z. Martin and M.A. Sephton, in ed.: A.B. Hughes, Extra terrestrial Amino Acids, in Amino Acids, Peptides and Proteins in Organic Chemistry, Origins and Synthesis of Amino Acids, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Vol. 1, pp. 3-42 (2009).
S.L. Miller, Science, 117, 528 (1953); doi:10.1126/science.117.3046.528.
S.L. Miller, J. Am. Chem. Soc., 77, 2351 (1955); doi:10.1021/ja01614a001.
K. Harada, Molecular Evolution and Protobiology, Plenum Press, New York, p. 83 (1984).
D.H. Abelson, Carnegie Inst. of Washington Year Book, vol. 53, 97 (1953–1954).
M. Akaboshi, N. Fujii and R. Navarro-González, The Role of Radiation in the Origin and Evolution of Life, Kyoto University of Press, Japan (2000).
G. Schlesinger and S.L. Miller, J. Mol. Evol., 19, 376 (1983); doi:10.1007/BF02101642.
D.P. Summers, Orig. Life Evol. Biosph., 35, 299 (2005); doi:10.1007/s11084-005-2040-1.
F. Tian, O.B. Toon, A.A. Parlov and H. De Streck, Science, 308, 1014 (2005); doi:10.1126/science.1106983.
D. Trail, E.B. Watson and N.D. Tailby, Nature, 480, 79 (2011); doi:10.1038/nature10655.
S.L. Miller and L.E. Orgel, The Origins of Life on the Earth, Prentice Hall Inc., New York (1974).
S.L. Miller and J.E. Van Trump, in ed.: Y. Wolman, The Strecker Synthesis in the Primitive Ocean, In: Origin of Life, Reidel, Dordrecht, pp. 135-141 (1981).
L.E. Snyder, Orig. Life Evol. Biosph., 27, 115 (1997); doi:10.1023/A:1006522230405.
A.G. Csaszar, J. Am. Chem. Soc., 114, 9568 (1992); doi:10.1021/ja00050a041.
P. Ehrenfreund, S.B. Charnley and O. Botta, in eds.: Eds. M. Livio, N. Reid and W. B. Sparks, Voyage from Dark Clouds to the Early Earth, In: Astrophysics of Life, Telescope Science Institute Symposium Series, Vol. 16, Cambridge University Press, pp. 1-20 (2005).
S.B. Charnley, P. Ehrenfreund and Y.-J. Kuan, Spectrochim. Acta A, 57, 685 (2001); doi:10.1016/S1386-1425(00)00437-6.
J.E. Elsila, J.P. Dworkin, M.P. Bernstein, M.P. Martin and S.A. Sandford, Astrophys. J., 660, 911 (2007); doi:10.1086/513141.
V. Blagojevic, S. Petrie and D.K. Bohme, Mon. Not. R. Astron. Soc., 339, L7 (2003); doi:10.1046/j.1365-8711.2003.06351.x.
J. Kissel and F.R. Krueger, Nature, 326, 755 (1987); doi:10.1038/326755a0.
J. Crovisier, D. Bockelee-Morvan, P. Colom, N. Biver, D. Despois and D.C. Lis, Astron. Astrophys., 418, 1141 (2004); doi:10.1051/0004-6361:20035688.
J.R. Cronin and S. Pizzarello, Adv. Space Res., 3, 5 (1983); doi:10.1016/0273-1177(83)90036-4.
J.R. Cronin, S. Pizzarello and D.P. Cruikshank, in eds.: J.F. Kerridhe and M.S. Matthews, Organic Matter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets, In: Meteorites and the Early Solar System, University of Arizona Press, Tucson, AZ, pp. 819-857 (1988).
J.R. Cronin and S. Chang, in eds.: J.M. Greenberg, C.X. Mendoza-Gomez and V. Pirronello, Organic Matter in Meteorites: Molecular Isotopic Analyses of the Murchison Meteorites, In: The Chemistry of Life’s Origins, Kluwer, Dordrecht, pp. 209-258 (1993).
K. Kobayashi, T. Kasamatsu, T. Kaneko, J. Koike, T. Oshima, T. Saito, T. Yamamoto and H. Yanagawa, Adv. Space Res., 16, 21 (1995); doi:10.1016/0273-1177(95)00188-K.
T. Kasamatsu, T. Kaneko, T. Saito and K. Kobayashi, Bull. Chem. Soc. Jpn., 70, 1021 (1997); doi:10.1246/bcsj.70.1021.
M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper and L.J. Allamandola, Nature, 416, 401 (2002); doi:10.1038/416401a.
G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack and J.M. Greenberg, Nature, 416, 403 (2002); doi:10.1038/416403a.
R. Briggs, G. Ertem, J.P. Ferris, J.M. Greenberg, P.J. McCain, C.X. Mendoza-Gomez and W. Schutte, Orig. Life Evol. Biosph., 22, 287 (1992); doi:10.1007/BF01810858.
C.F. Chyba and C. Sagan, Nature, 355, 125 (1992); doi:10.1038/355125a0.
D.W. Sears, Mod. Geol., 5, 155 (1975).
V.A. Basiuk and J. Douda, Planet. Space Sci., 47, 577 (1999); doi:10.1016/S0032-0633(98)00136-6.
M.J. Genge, M.M. Grady and R. Hutchison, Geochim. Cosmochim. Acta, 61, 5149 (1997); doi:10.1016/S0016-7037(97)00308-6.
G.J. Flynn, Icarus, 77, 287 (1989); doi:10.1016/0019-1035(89)90091-2.
W.G. Love and D.E. Brownlee, Icarus, 89, 26 (1991); doi:10.1016/0019-1035(91)90085-8.
F. Rodante, Thermochim. Acta, 200, 47 (1992); doi:10.1016/0040-6031(92)85105-5.
F.J.M. Rietmeijer, Meteorit. Planet. Sci., 31, 237 (1996); doi:10.1111/j.1945-5100.1996.tb02018.x.
K.A. Farley, S.G. Love and D.B. Patterson, Geochim. Cosmochim. Acta, 61, 2309 (1997); doi:10.1016/S0016-7037(97)00068-9.
A. Greshake, W. Klöck, P. Arndt, M. Maetz, G.J. Flynn, S. Bajt and A. Bischoff, Meteorit. Planet. Sci., 33, 267 (1998); doi:10.1111/j.1945-5100.1998.tb01632.x.
D.P. Glavin and J.L. Bada, Astrobiology, 1, 259 (2001); doi:10.1089/15311070152757456.
G. Matrajt, D. Brownlee, M. Sadilek and L. Kruse, Meteorit. Planet. Sci., 41, 903 (2006); doi:10.1111/j.1945-5100.2006.tb00494.x.
K. Harada, S. Suzuki and H. Ishida, Biosystems, 10, 247 (1978); doi:10.1016/0303-2647(78)90006-0.
K. Harada, S. Suzuki, H. Ishida, M. Matsuyama and M. Tamura, in ed.: H. Noda, Amino Acid Synthesis by Contact Glow Discharge Electrolysis II, A Possible Route for Prebiotic Synthesis of Amino Acids, In: Origin of Life, pp. 141–151, Center for Academic Publication, Japan (1978).
H. Hanafusa and S. Akabori, Bull. Chem. Soc. Jpn., 32, 626 (1959); doi:10.1246/bcsj.32.626.
A. Belloche, K.M. Menten, C. Comito, H.S.P. Müller, P. Schilke, J. Ott, S. Thorwirth and C. Hieret, Astron. Astrophys., 482, 179 (2008); doi:10.1051/0004-6361:20079203.
Y. Ito, T. Munegumi and K. Harada, Res. J. Pharm. Biol. Chem. Sci., 4, 1811 (2013).
K. Harada and T. Iwasaki, Nature, 250, 426 (1974); doi:10.1038/250426a0.
K. Harada, S. Igari, T. Munegumi, M. Takasaki and A. Shimoyama, Bull. Chem. Soc. Jpn., 64, 1776 (1991); doi:10.1246/bcsj.64.1776.
T. Munegumi, Bull. Chem. Soc. Jpn., 87, 1208 (2014); doi:10.1246/bcsj.20140164.
M. Takasaki and K. Harada, Tetrahedron, 41, 4463 (1985); doi:10.1016/S0040-4020(01)82340-1.
B. Radziszewski, Dtsch. Chem. Ges., 18, 355 (1885); doi:10.1002/cber.18850180171.
L. McMaster and F.B. Langreck, J. Am. Chem. Soc., 39, 103 (1917); doi:10.1021/ja02246a012.
J.V. Murray and J.B. Cloke, J. Am. Chem. Soc., 56, 2749 (1934); doi:10.1021/ja01327a070.
K.B. Wiberg, J. Am. Chem. Soc., 75, 3961 (1953); doi:10.1021/ja01112a025.
G.P. Payne, P.H. Deming and P.H. Williams, J. Org. Chem., 26, 659 (1961); doi:10.1021/jo01062a004.
G.P. Payne, J. Org. Chem., 26, 668 (1961); doi:10.1021/jo01062a006.
Y. Sawaki and Y. Ogata, Bull. Chem. Soc. Jpn., 54, 793 (1981); doi:10.1246/bcsj.54.793.
H. Hase and K. Harada, Viva Origino, 29, 61 (2001).
P. Neta, Chem. Rev., 72, 533 (1972); doi:10.1021/cr60279a005.
H. Buechler, R.E. Buehler and R. Cooper, J. Phys. Chem., 80, 1549 (1976); doi:10.1021/j100555a006.
R.A. Witter and P. Neta, J. Org. Chem., 38, 484 (1973); doi:10.1021/jo00943a016.
T. Munegumi, N. Nishi and K. Harada, J. Chem. Soc., 1689 (1990); doi:10.1039/C39900001689.
C.L. Keller, J.D. Dalessandro, R.P. Hotz and A.R. Pinhas, J. Org. Chem., 73, 3616 (2008); doi:10.1021/jo7026905.
D. Minakata, K. Li, P. Westerhoff and J. Crittenden, Environ. Sci. Technol., 43, 6220 (2009); doi:10.1021/es900956c.
S. Mitroka, S. Zimmeck, D. Troya and J.M. Tanko, J. Am. Chem. Soc., 132, 2907 (2010); doi:10.1021/ja903856t.
W.M. Garrison, Chem. Rev., 87, 381 (1987); doi:10.1021/cr00078a006.
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross and W. Tsang, J. Phys. Chem. Ref. Data, 17, 513 (1988); doi:10.1063/1.555805.