Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Various Elements of Heat Sources within an Optimized Photonic Crystal Vertical Cavity Surface Emitting Laser: Influence of Hole Etching Depth
Corresponding Author(s) : Saeid Marjani
Asian Journal of Chemistry,
Vol. 25 No. 8 (2013): Vol 25 Issue 8
Abstract
In this work, the various elements of heat sources within the active region of a long-wavelength InGaAsP photonic crystal oxide vertical cavity surface emitting laser (VCSEL) at a constant bias power have been investigated. The device employs strain-compensated InGaAsP multi-quantum wells sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors that are fused on both sides of the InP spacer. In this work, the etching depth was continued down to the top of lower InP layer while there was no hole in the previous work. This paper provides key results of the various elements of heat sources upon the hole etching depth, including the Joule heat power, the Peltier-Thomson heat power and the recombination heat power within the active region.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.D. Joannopoulos, S.G. Johnson, R.D. Meade and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, Univ. Press, edn. 2, pp. 94-99 (2008).
- M. Dems, R. Kotynski and K. Panajotov, J. Opt. Express, 13, 3196 (2005).
- E. Kapon and A. Sirbu, J. Nature Photon., 3, 27 (2009).
- R. Faez, A. Marjani and S. Marjani, J. IEICE Electron. Express, 8, 1096 (2011).
- S. Marjani and H. Marjani, Asian J. Chem., 24, 3194 (2012).
- SILVACO International, ATLAS User's Manual, USA, SILVACO International Incorporated (2010).
- J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Ch. 3 Carrier Transport and Ch. 6 Heat Generation and Dissipation UCSB: Academic Press, pp. 49-50 and 141-147 (2003).
- G.R. Hadley, J. Opt. Lett., 20, 1483 (1995).
- H. Wenzel and H.J. Wunsche, IEEE J. Quantum Electron., 33, 1156 (1997).
- K.D. Choquette, K.M. Geib, C.I. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes and R. Hull, IEEE J. Sel. Topics Quantum Electron., 3, 916 (1997).
References
J.D. Joannopoulos, S.G. Johnson, R.D. Meade and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, Univ. Press, edn. 2, pp. 94-99 (2008).
M. Dems, R. Kotynski and K. Panajotov, J. Opt. Express, 13, 3196 (2005).
E. Kapon and A. Sirbu, J. Nature Photon., 3, 27 (2009).
R. Faez, A. Marjani and S. Marjani, J. IEICE Electron. Express, 8, 1096 (2011).
S. Marjani and H. Marjani, Asian J. Chem., 24, 3194 (2012).
SILVACO International, ATLAS User's Manual, USA, SILVACO International Incorporated (2010).
J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Ch. 3 Carrier Transport and Ch. 6 Heat Generation and Dissipation UCSB: Academic Press, pp. 49-50 and 141-147 (2003).
G.R. Hadley, J. Opt. Lett., 20, 1483 (1995).
H. Wenzel and H.J. Wunsche, IEEE J. Quantum Electron., 33, 1156 (1997).
K.D. Choquette, K.M. Geib, C.I. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes and R. Hull, IEEE J. Sel. Topics Quantum Electron., 3, 916 (1997).