Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of an InGaAsP Vertical-Cavity Surface-Emitting Diode Lasers for High-Power Single-Mode Operation in 1550 nm Optical-Fibre Communication Systems
Corresponding Author(s) : Saeid Marjani
Asian Journal of Chemistry,
Vol. 25 No. 8 (2013): Vol 25 Issue 8
Abstract
Performance of InGaAsP vertical-cavity surface-emitting diode lasers (VCSELs) at higher powers for second-generation optical-fibre communication systems is investigated with the aid of the comprehensive threshold fully self-consistent optical-electrical-thermal-gain model. The optical confinement introduced by the oxide aperture or a single defect photonic crystal design with holes etched throughout the whole structure, are compared with previous work. Photonic crystal vertical-cavity surface-emitting diode laser shows 30.86 % and 57.02 % lower threshold current than that of the similar oxide confined vertical-cavity surface-emitting diode laser and previous results, respectively. In this way, the minimal threshold power decreases 48.82 % from 1.1176e-5 W to 0.5719e-5 W. This paper provides key results of the threshold characteristics, including the threshold current, the threshold power and the threshold temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Iga, J. IEEE Select. Topics Electron, 16, 1201 (2000).
- M. Dems, R. Kotynski and K. Panajotov, J. Opt. Express, 13, 3196 (2005).
- E. Kapon and A. Sirbu, J. Nature Photonics, 3, 27 (2009).
- R. Faez, A. Marjani and S. Marjani, J. IEICE Electron. Express, 8, 1096 (2011).
- T. Czyszanowski, M. Dems, R. Sarzala, W. Nakwaski and K. Panajotov, J. IEEE Quantum Electron., 47, 1291 (2011).
- T. Czyszanowski, M. Dems, H. Thienpont and K. Panajotov, J. Phys. D: Appl. Phys., 41, 085102 (2008).
- T. Czyszanowski, IEEE/LEOS Winter Topicals Meeting Series, Innsbruck, Vol. 20, pp. 20-21 (2009).
- P.S. Menon, K. Kumarajah, M. Ismail, B.Y.M. Majlis and S. Shaari, J. Opt. Commun., 31, 81 (2010).
- SILVACO International, ATLAS User's Manual, USA, SILVACO International Incorporated (2010).
- H. Wenzel and H.J. Wunsche, IEEE J. Quantum Electron., 33, 1156 (1997).
- K.D. Choquette, K.M. Geib, C.I. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes and R. Hull, IEEE J. Sel. Topics Quantum Electron, 3, 916 (1997).
References
K. Iga, J. IEEE Select. Topics Electron, 16, 1201 (2000).
M. Dems, R. Kotynski and K. Panajotov, J. Opt. Express, 13, 3196 (2005).
E. Kapon and A. Sirbu, J. Nature Photonics, 3, 27 (2009).
R. Faez, A. Marjani and S. Marjani, J. IEICE Electron. Express, 8, 1096 (2011).
T. Czyszanowski, M. Dems, R. Sarzala, W. Nakwaski and K. Panajotov, J. IEEE Quantum Electron., 47, 1291 (2011).
T. Czyszanowski, M. Dems, H. Thienpont and K. Panajotov, J. Phys. D: Appl. Phys., 41, 085102 (2008).
T. Czyszanowski, IEEE/LEOS Winter Topicals Meeting Series, Innsbruck, Vol. 20, pp. 20-21 (2009).
P.S. Menon, K. Kumarajah, M. Ismail, B.Y.M. Majlis and S. Shaari, J. Opt. Commun., 31, 81 (2010).
SILVACO International, ATLAS User's Manual, USA, SILVACO International Incorporated (2010).
H. Wenzel and H.J. Wunsche, IEEE J. Quantum Electron., 33, 1156 (1997).
K.D. Choquette, K.M. Geib, C.I. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes and R. Hull, IEEE J. Sel. Topics Quantum Electron, 3, 916 (1997).