Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Vibrational Spectra and Potential Energy Distributions for 5-Chloro-2-nitroanisole by Density Functional Theory and Normal Coordinate Calculations
Corresponding Author(s) : G. Venkatesh
Asian Journal of Chemistry,
Vol. 28 No. 3 (2016): Vol 28 Issue 3
Abstract
In this study, the vibrational spectral analysis have been carried out using FT-IR and FT-Raman spectroscopy in the regions of 4000-400 cm-1 and 3500-100 cm-1, respectively for 5-chloro-2-nitroanisole (5C2NA). The molecular geometry and vibrational frequencies of 5-chloro-2-nitroanisole were estimated by applying the density functional theory approaches including 6-31G*/6-311+G** as basis set. The variation between the observed and scaled wave number values of most of the basics is very small. Coupling of vibrations has been decided by reckoning total energy distributions. FT-IR and FT-Raman spectra of the 5-chloro-2-nitroanisole have been calculated. Further, density functional theory combined with quantum chemical calculations to find out the first-order hyperpolarizability. The calculated HOMO-LUMO energy gap shows that charge transfer occurs inside the molecule. Electronic excitation energies, oscillator strength and character of the respective excited states were calculated by the closed-shell singlet calculation method for the molecule.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Fiege, H.-W. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H.-J. Buysch, D.arbe and W. Paulus, Phenol Derivatives, In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2002).
- M.V. Volkenstein, M.A. Elyashevitch and B.I. Stepanov, Kolebaniya Molecule (Molecular Vibrations), vols. I/II, GITTL, Moscow (1949) (in Russian).
- E.B. Wilson Jr., J.C. Decius and P.C. Cross, Molecular Vibrations, McGraw Hill, New York (1955).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
- P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); doi:10.1021/ja00362a005.
- G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang and J.R. Durig, Spectrochim. Acta A, 49, 2007 (1993); doi:10.1016/S0584-8539(09)91012-1.
- G. Keresztury, in eds.: J.M. Chalmers and P.R. Griffiths, Handbook of Vibrational Spectroscopy John Wiley & Sons Ltd. vol. 1, p. 71 (2002).
- P. Pulay, G. Fogarasi, F. Pang and J.E. Boggs, J. Am. Chem. Soc., 101, 2550 (1979); doi:10.1021/ja00504a009.
- M. Baranska, K. Chruszcz, B. Boduszek and L.M. Proniewicz, Vib. Spectrosc., 31, 295 (2003); doi:10.1016/S0924-2031(03)00025-0.
- Y. Baklouti, N. Chaari, H. Feki, N. Chniba-Boudjada and F. Zouari, Spectrochim. Acta A, 136, 397 (2015); doi:10.1016/j.saa.2014.09.049.
- S. Thakur and V.P. Gupta, Indian J. Pure Appl. Phys., 36, 567 (1998).
- J.N. Roy, Indian J. Phys. B, 65, 364 (1991).
- K. Piela, K. Holderna-Natkaniec, M. Baranowski, T. Misiaszek, J. Baran and M. Magdalena Szostak, J. Mol. Struct., 1033, 91 (2013); doi:10.1016/j.molstruc.2012.08.014.
- M.J. Alam and S. Ahmad, J. Mol. Struct., 1059, 239 (2014); doi:10.1016/j.molstruc.2013.12.002.
- S. Guidara, H. Feki and Y. Abid, Spectrochim. Acta A, 133, 856 (2014); doi:10.1016/j.saa.2014.06.021.
- D.A. Kleinman, Phys. Rev., 126, 1977 (1962); doi:10.1103/PhysRev.126.1977.
- P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York (1991).
- K. Wu, C. Liu and C. Mang, Opt. Mater., 29, 1129 (2007); doi:10.1016/j.optmat.2006.05.005.
- I. Sheikhshoaie and W. Fabian, Dyes Pigments, 70, 91 (2006); doi:10.1016/j.dyepig.2005.04.011.
References
H. Fiege, H.-W. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H.-J. Buysch, D.arbe and W. Paulus, Phenol Derivatives, In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2002).
M.V. Volkenstein, M.A. Elyashevitch and B.I. Stepanov, Kolebaniya Molecule (Molecular Vibrations), vols. I/II, GITTL, Moscow (1949) (in Russian).
E.B. Wilson Jr., J.C. Decius and P.C. Cross, Molecular Vibrations, McGraw Hill, New York (1955).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); doi:10.1021/ja00362a005.
G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang and J.R. Durig, Spectrochim. Acta A, 49, 2007 (1993); doi:10.1016/S0584-8539(09)91012-1.
G. Keresztury, in eds.: J.M. Chalmers and P.R. Griffiths, Handbook of Vibrational Spectroscopy John Wiley & Sons Ltd. vol. 1, p. 71 (2002).
P. Pulay, G. Fogarasi, F. Pang and J.E. Boggs, J. Am. Chem. Soc., 101, 2550 (1979); doi:10.1021/ja00504a009.
M. Baranska, K. Chruszcz, B. Boduszek and L.M. Proniewicz, Vib. Spectrosc., 31, 295 (2003); doi:10.1016/S0924-2031(03)00025-0.
Y. Baklouti, N. Chaari, H. Feki, N. Chniba-Boudjada and F. Zouari, Spectrochim. Acta A, 136, 397 (2015); doi:10.1016/j.saa.2014.09.049.
S. Thakur and V.P. Gupta, Indian J. Pure Appl. Phys., 36, 567 (1998).
J.N. Roy, Indian J. Phys. B, 65, 364 (1991).
K. Piela, K. Holderna-Natkaniec, M. Baranowski, T. Misiaszek, J. Baran and M. Magdalena Szostak, J. Mol. Struct., 1033, 91 (2013); doi:10.1016/j.molstruc.2012.08.014.
M.J. Alam and S. Ahmad, J. Mol. Struct., 1059, 239 (2014); doi:10.1016/j.molstruc.2013.12.002.
S. Guidara, H. Feki and Y. Abid, Spectrochim. Acta A, 133, 856 (2014); doi:10.1016/j.saa.2014.06.021.
D.A. Kleinman, Phys. Rev., 126, 1977 (1962); doi:10.1103/PhysRev.126.1977.
P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York (1991).
K. Wu, C. Liu and C. Mang, Opt. Mater., 29, 1129 (2007); doi:10.1016/j.optmat.2006.05.005.
I. Sheikhshoaie and W. Fabian, Dyes Pigments, 70, 91 (2006); doi:10.1016/j.dyepig.2005.04.011.