Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermodynamic and Experimental Analysis on Vacuum Silicothermic Reduction of MgO in Molten Slags
Corresponding Author(s) : Jiacheng Gao
Asian Journal of Chemistry,
Vol. 25 No. 7 (2013): Vol 25 Issue 7
Abstract
Smelting reduction, a new magnesium production process, has been investigated. At high temperature, appropriate mixture of Al2O3 and SiO2 with calcined dolomite can make charge to form molten slag and reduction reaction take place between liquid MgO and liquid ferrosilicon. Smelting reduction on molten slag of the compositon 55 % calcined dolomite (32 % CaO and 23 % MgO), 35 % Al2O3, 10 % SiO2 reacted with ferrosilicon was studied. By thermodynamic analysing, the semlting reduction could react at 1873 K under atmosphere. The experiments of semlting reduction were carried out under vacuum for avoiding re-oxidation of Mg vapour and the results showed that reduction extent of MgO was achieved up to 97 % with 1X silicon stoichiometry at 1873 K for 2 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.Y. Zuo and W.B. Du, J. Guangdong Nonferr. Met., 15, 1 (2005).
- F. Gao, Z.R. Nie and Z.H. Wang, Trans. Nonferr. Met. Soc. China, 18, 749 (2008).
- B. Sarma, A.W. Crambler and R.J. Fruehan, Metall. Mater. Trans. B, 27, 717 (1996).
- G.G. Richards, J.K. Brimacombe and G.W. Toop, Metall. Mater. Trans. B, 16, 513 (1985).
- P.R. Taylor and W.M. Wang, Plasma Chem. Plasma Process, 22, 387 (2002).
- S.Q. Guo, G.C. Jiang and J.L. Xu, J. Iron Steel Inst., 7, 1 (2000).
- R. Winand, Trans. Inst. Min. Metall. Sect. C, 99, 105 (1990).
- M. Halmann, A. Frei and A. Steinfeld, Ind. Eng. Chem. Res., 47, 2146 (2008).
- J.R. Wynnyckyj and L.M. Pidgeon, Metall. Mater. Trans., 4, 979 (1971).
- R.T. Li, W. Pan, S. Masamichi and J.Q. Li, Thermochim. Acta, 390, 145 (2002).
- I.M. Morsi, K.A. Elbarawy, M.B. Morsi and S.R. Abdeigawad, Can. Metall. Q, 41, 15 (2002).
- J.D.T. Capocchi and V. Rajakumar, Magnesium Technology, Proceedings of the Symposium Sponsored by the Light Metals Division of the Minerals, Metals & Materials Society, USA, pp. 53-63 (2000).
- Q.F. Tang, J.C. Gao and X.H. Chen, J. Chongqing Univ., 34, 65 (2011).
References
T.Y. Zuo and W.B. Du, J. Guangdong Nonferr. Met., 15, 1 (2005).
F. Gao, Z.R. Nie and Z.H. Wang, Trans. Nonferr. Met. Soc. China, 18, 749 (2008).
B. Sarma, A.W. Crambler and R.J. Fruehan, Metall. Mater. Trans. B, 27, 717 (1996).
G.G. Richards, J.K. Brimacombe and G.W. Toop, Metall. Mater. Trans. B, 16, 513 (1985).
P.R. Taylor and W.M. Wang, Plasma Chem. Plasma Process, 22, 387 (2002).
S.Q. Guo, G.C. Jiang and J.L. Xu, J. Iron Steel Inst., 7, 1 (2000).
R. Winand, Trans. Inst. Min. Metall. Sect. C, 99, 105 (1990).
M. Halmann, A. Frei and A. Steinfeld, Ind. Eng. Chem. Res., 47, 2146 (2008).
J.R. Wynnyckyj and L.M. Pidgeon, Metall. Mater. Trans., 4, 979 (1971).
R.T. Li, W. Pan, S. Masamichi and J.Q. Li, Thermochim. Acta, 390, 145 (2002).
I.M. Morsi, K.A. Elbarawy, M.B. Morsi and S.R. Abdeigawad, Can. Metall. Q, 41, 15 (2002).
J.D.T. Capocchi and V. Rajakumar, Magnesium Technology, Proceedings of the Symposium Sponsored by the Light Metals Division of the Minerals, Metals & Materials Society, USA, pp. 53-63 (2000).
Q.F. Tang, J.C. Gao and X.H. Chen, J. Chongqing Univ., 34, 65 (2011).