Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic Studies of the Non-Isothermal Decomposition of Strontium Nitrate
Corresponding Author(s) : Jadu Samuel
Asian Journal of Chemistry,
Vol. 25 No. 7 (2013): Vol 25 Issue 7
Abstract
The thermal decomposition kinetics of strontium nitrate, Sr(NO3)2 was studied by thermogravimetry using non-isothermal experiments. For the kinetic analysis, the TG/DTG data obtained in the temperature range 30-850 ºC at different heating rates (5, 10, 15 and 20 K/min) in the nitrogen atmosphere were processed by model fitting and model free methods. The thermal decomposition of Sr(NO3)2 occurred in a single stage without the formation of intermediate nitrite. The average apparent activation energies of thermal decomposition of Sr(NO3)2 as determined by Straink, Flynn-Wall-Ozawa, KAS and Friedman methods are 344.37, 341.39, 344.05 and 362.62 kJ/mol, respectively. The value of the invariant activation energy (344.83 kJ/ mol) obtained by Invariant kinetic parameter method is in a good agreement with integral isoconversional methods. The appropriate conversion model of the process selected by means of the master plot method is "Diffusion model (D4)".
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.P. MacMillan, J.W. Park, R. Gerstenberg, H. Wagner, K. Köhler and P. Wallbrecht, Strontium and Strontium Compounds in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2002).
- C. James and J. Samuel, J. Radioanal. Nucl. Chem., 258, 665 (2003).
- B.V. L'vov and A.V. Novichikhin, Spectrochim. Acta B, 50, 1427 (1995).
- C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, p. 439 (1963).
- S.M.K. Nair and C. James, J. Radionucl. Chem. Lett., 86, 311 (1984).
- S. Vyazovkin, J. Therm. Anal. Calorim., 49, 1493 (1997).
- J.W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, London, p. 857 (1967).
- J.W. Park, S.C. Oh, H.P. Lee, H.T. Kim and K.O. Yoo, Polym. Degrad. Stab., 67, 535 (2000).
- J.A. Conesa, A. Marcilla, R. Font and J.A. Caballero, J. Anal. Appl. Pyrol., 36, 1 (1996).
- J.H. Flynn and L.A. Wall, Polym. Lett., 4, 323 (1966).
- T. Ozawa, Bull. Chem. Soc. (Japan), 38, 1881 (1965).
- T. Akahira and T. Sunose, Res. Report Chiba Inst. Technol., 16, 22 (1971).
- H.L. Friedman, J. Polym. Sci., 6, 183 (1964).
- M.J. Straink, Thermochim. Acta, 404, 163 (2003).
- M.J. Straink, J. Alloys Compd., 443, 4 (2007).
- Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. popescu and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011).
- A. Pratap, T.L.S. Rao, K.N. Lad, H.D. Dhurandhar, J. Therm. Anal. Calorim., 89, 399 (2007).
- S. Vyazovkin, Thermochim. Acta, 355, 155 (2000).
- L.A. Perez-Maqueda, J.M. Criado, F.J. Gotor and J. Malek, J. Phys. Chem. A, 106, 2862 (2002).
- C.D. Doyle, J. Appl. Polym. Sci., 5, 285 (1961).
- A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964).
- P. Budrugeac, E. Segal, L.A. Perez-Maqueda and J.M. Criado, Polym. Degrad. Stab., 84, 311 (2004).
- A.L. Lesnikovich and S.V. Levchik, J. Propul. Power, 1, 311 (1985).
- S. Vyazovkin and W. Linert, J. Solid State Chem., 114, 392 (1995).
References
J.P. MacMillan, J.W. Park, R. Gerstenberg, H. Wagner, K. Köhler and P. Wallbrecht, Strontium and Strontium Compounds in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2002).
C. James and J. Samuel, J. Radioanal. Nucl. Chem., 258, 665 (2003).
B.V. L'vov and A.V. Novichikhin, Spectrochim. Acta B, 50, 1427 (1995).
C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, p. 439 (1963).
S.M.K. Nair and C. James, J. Radionucl. Chem. Lett., 86, 311 (1984).
S. Vyazovkin, J. Therm. Anal. Calorim., 49, 1493 (1997).
J.W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, London, p. 857 (1967).
J.W. Park, S.C. Oh, H.P. Lee, H.T. Kim and K.O. Yoo, Polym. Degrad. Stab., 67, 535 (2000).
J.A. Conesa, A. Marcilla, R. Font and J.A. Caballero, J. Anal. Appl. Pyrol., 36, 1 (1996).
J.H. Flynn and L.A. Wall, Polym. Lett., 4, 323 (1966).
T. Ozawa, Bull. Chem. Soc. (Japan), 38, 1881 (1965).
T. Akahira and T. Sunose, Res. Report Chiba Inst. Technol., 16, 22 (1971).
H.L. Friedman, J. Polym. Sci., 6, 183 (1964).
M.J. Straink, Thermochim. Acta, 404, 163 (2003).
M.J. Straink, J. Alloys Compd., 443, 4 (2007).
Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. popescu and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011).
A. Pratap, T.L.S. Rao, K.N. Lad, H.D. Dhurandhar, J. Therm. Anal. Calorim., 89, 399 (2007).
S. Vyazovkin, Thermochim. Acta, 355, 155 (2000).
L.A. Perez-Maqueda, J.M. Criado, F.J. Gotor and J. Malek, J. Phys. Chem. A, 106, 2862 (2002).
C.D. Doyle, J. Appl. Polym. Sci., 5, 285 (1961).
A.W. Coats and J.P. Redfern, Nature, 201, 68 (1964).
P. Budrugeac, E. Segal, L.A. Perez-Maqueda and J.M. Criado, Polym. Degrad. Stab., 84, 311 (2004).
A.L. Lesnikovich and S.V. Levchik, J. Propul. Power, 1, 311 (1985).
S. Vyazovkin and W. Linert, J. Solid State Chem., 114, 392 (1995).