Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of Ball Clay-Manganese Dioxide Nanocomposites
Corresponding Author(s) : K. Thirumoorthy
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
We report in present work the simple procedure to synthesize ball clay-manganese dioxide (MnO2) nanocomposites. The as-synthesized nanocomposites were characterized using powder XRD, FT-IR, SEM, TEM and BET surface area, respectively. Recently the explorations of clay modification for developing the adsorbent ability to get rid of the toxins from water. The XRD result indicates that the nanocomposite was crystalline in nature. The FTIR spectra showed that the native ball clay was successfully converted to ball clay-MnO2 nanocomposites, which were identified by the change in peaks. The SEM images of the ball clay-MnO2 nanocomposites showed that development in surface area. The TEM images indicated that the size of the nanoparticle. The BET studies of as synthesized ball clay-MnO2 nanocomposites indicate that surface area, total pore volume and average pore diameter values.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Ciardelli, L. Corsi and M. Marcucci, Resour. Conserv. Recycl., 31, 189 (2000); https://doi.org/10.1016/S0921-3449(00)00079-3.
- M. Muthukumar and N. Selvakumar, Dyes Pigments, 62, 221 (2004); https://doi.org/10.1016/j.dyepig.2003.11.002.
- N. Das, R. Vimala and P. Karthika, Indian J. Biotechnol., 7, 159 (2008).
- S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini and H. Hamitouche, Chem. Eng. Process.: Process Intensif., 49, 1176 (2010); https://doi.org/10.1016/j.cep.2010.08.019.
- M.A. Gondal, C. Li, X. Chang, L. Sikong, Z.H. Yamani, Q. Zhou, F. Yang and Q. Lin, J. Environ. Sci. Health-Part A, 47, 570 (2012); https://doi.org/10.1080/10934529.2012.650566.
- L.W. Man, P. Kumar, T.T. Teng and K.L. Wasewar, Desal. Water Treat., 40, 260 (2012); https://doi.org/10.1080/19443994.2012.671257.
- M. Sala and M.C. Gutiérrez-Bouzán, Int. J. Photoenergy, Article ID 629103 (2012); https://doi.org/10.1155/2012/629103.
- W. Chu, Water Res., 35, 3147(2001); https://doi.org/10.1016/S0043-1354(01)00015-X.
- C. Namasivayam, M. Dinesh Kumar, K. Selvi, R. Ashruffunissa Begum, T. Vanathi and R.T. Yamuna, Biomass Bioenergy, 21, 477 (2001); https://doi.org/10.1016/S0961-9534(01)00052-6.
- F.C. Wu, R.L. Tseng and R.S. Juang, Sep. Purif. Technol., 47, 10 (2005); https://doi.org/10.1016/j.seppur.2005.03.013.
- B.H. Hameed, A.L. Ahmad and K.N.A. Latiff, Dyes Pigments, 75, 143 (2007); https://doi.org/10.1016/j.dyepig.2006.05.039.
- J.X. Lin, S.L. Zhan, M.H. Fang, X.Q. Qian and H. Yang, J. Environ. Manage., 87, 193 (2008); https://doi.org/10.1016/j.jenvman.2007.01.001.
- A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.R. Guilherme, M.H. Kunita, A.C. Martins, T.L. Silva, J.C.G. Moraes and V.C. Almeida, Chem. Eng. J., 174, 117 (2011); https://doi.org/10.1016/j.cej.2011.08.058.
- D. Schimmel, K.C. Fagnani, J.B.O. Dos Santos, M.A.S.D. Barros and E.A. Da Silva, Braz. J. Chem. Eng., 27, 289 (2010); https://doi.org/10.1590/S0104-66322010000200007.
- A. Martins and N. Nunes, J. Chem. Edu., 92, 143 (2015); https://doi.org/10.1021/ed500055v.
- O. Abollino, M. Aceto, M. Malandrino, C. Sarzanini and E. Mentasti, Water Res., 37, 1619 (2003); https://doi.org/10.1016/S0043-1354(02)00524-9.
- E. Bulut, M.Özacar and I.A. Sengil, Micropor. Mesopor. Mater., 115, 234 (2008); https://doi.org/10.1016/j.micromeso.2008.01.039
- Y. Huang, X. Ma, G. Liang, Y. Yan and S. Wang, Chem. Eng. J., 138, 187 (2008); https://doi.org/10.1016/j.cej.2007.06.017.
- B.A. Fil, M.T. Yilmaz, S. Bayar and M. Telkoca, Braz. J. Chem. Eng., 31, 171 (2014); https://doi.org/10.1590/S0104-66322014000100016.
- E.I. Unuabonah and A. Taubert, Appl. Clay Sci., 99, 83 (2014); https://doi.org/10.1016/j.clay.2014.06.016.
- R.F. Gomes, A.C.N. De Azevedo, A.G.B. Pereira, E.C. Muniz, A.R. Fajardo and F.H.A. Rodrigues, J. Colloid Interface Sci., 454, 200 (2015); https://doi.org/10.1016/j.jcis.2015.05.026.
- D. Das, D.P. Samal, M. BC, J. Chem. Eng. Process Technol., 06, 248 (2015); https://doi.org/10.4172/2157-7048.1000248.
- D.W. Cho, B.H. Jeon, C.M. Chon, Y. Kim, F.W. Schwartz, E.S. Lee and H. Song, Chem. Eng. J., 200, 654 (2012); https://doi.org/10.1016/j.cej.2012.06.126.
- S. Ismadji, D.S. Tong, F.E.Soetaredjo, A.Ayucitra, W.H. Yu and C.H. Zhou, Appl. Clay Sci., 119, 146 (2016); https://doi.org/10.1016/j.clay.2015.08.022.
References
G. Ciardelli, L. Corsi and M. Marcucci, Resour. Conserv. Recycl., 31, 189 (2000); https://doi.org/10.1016/S0921-3449(00)00079-3.
M. Muthukumar and N. Selvakumar, Dyes Pigments, 62, 221 (2004); https://doi.org/10.1016/j.dyepig.2003.11.002.
N. Das, R. Vimala and P. Karthika, Indian J. Biotechnol., 7, 159 (2008).
S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini and H. Hamitouche, Chem. Eng. Process.: Process Intensif., 49, 1176 (2010); https://doi.org/10.1016/j.cep.2010.08.019.
M.A. Gondal, C. Li, X. Chang, L. Sikong, Z.H. Yamani, Q. Zhou, F. Yang and Q. Lin, J. Environ. Sci. Health-Part A, 47, 570 (2012); https://doi.org/10.1080/10934529.2012.650566.
L.W. Man, P. Kumar, T.T. Teng and K.L. Wasewar, Desal. Water Treat., 40, 260 (2012); https://doi.org/10.1080/19443994.2012.671257.
M. Sala and M.C. Gutiérrez-Bouzán, Int. J. Photoenergy, Article ID 629103 (2012); https://doi.org/10.1155/2012/629103.
W. Chu, Water Res., 35, 3147(2001); https://doi.org/10.1016/S0043-1354(01)00015-X.
C. Namasivayam, M. Dinesh Kumar, K. Selvi, R. Ashruffunissa Begum, T. Vanathi and R.T. Yamuna, Biomass Bioenergy, 21, 477 (2001); https://doi.org/10.1016/S0961-9534(01)00052-6.
F.C. Wu, R.L. Tseng and R.S. Juang, Sep. Purif. Technol., 47, 10 (2005); https://doi.org/10.1016/j.seppur.2005.03.013.
B.H. Hameed, A.L. Ahmad and K.N.A. Latiff, Dyes Pigments, 75, 143 (2007); https://doi.org/10.1016/j.dyepig.2006.05.039.
J.X. Lin, S.L. Zhan, M.H. Fang, X.Q. Qian and H. Yang, J. Environ. Manage., 87, 193 (2008); https://doi.org/10.1016/j.jenvman.2007.01.001.
A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.R. Guilherme, M.H. Kunita, A.C. Martins, T.L. Silva, J.C.G. Moraes and V.C. Almeida, Chem. Eng. J., 174, 117 (2011); https://doi.org/10.1016/j.cej.2011.08.058.
D. Schimmel, K.C. Fagnani, J.B.O. Dos Santos, M.A.S.D. Barros and E.A. Da Silva, Braz. J. Chem. Eng., 27, 289 (2010); https://doi.org/10.1590/S0104-66322010000200007.
A. Martins and N. Nunes, J. Chem. Edu., 92, 143 (2015); https://doi.org/10.1021/ed500055v.
O. Abollino, M. Aceto, M. Malandrino, C. Sarzanini and E. Mentasti, Water Res., 37, 1619 (2003); https://doi.org/10.1016/S0043-1354(02)00524-9.
E. Bulut, M.Özacar and I.A. Sengil, Micropor. Mesopor. Mater., 115, 234 (2008); https://doi.org/10.1016/j.micromeso.2008.01.039
Y. Huang, X. Ma, G. Liang, Y. Yan and S. Wang, Chem. Eng. J., 138, 187 (2008); https://doi.org/10.1016/j.cej.2007.06.017.
B.A. Fil, M.T. Yilmaz, S. Bayar and M. Telkoca, Braz. J. Chem. Eng., 31, 171 (2014); https://doi.org/10.1590/S0104-66322014000100016.
E.I. Unuabonah and A. Taubert, Appl. Clay Sci., 99, 83 (2014); https://doi.org/10.1016/j.clay.2014.06.016.
R.F. Gomes, A.C.N. De Azevedo, A.G.B. Pereira, E.C. Muniz, A.R. Fajardo and F.H.A. Rodrigues, J. Colloid Interface Sci., 454, 200 (2015); https://doi.org/10.1016/j.jcis.2015.05.026.
D. Das, D.P. Samal, M. BC, J. Chem. Eng. Process Technol., 06, 248 (2015); https://doi.org/10.4172/2157-7048.1000248.
D.W. Cho, B.H. Jeon, C.M. Chon, Y. Kim, F.W. Schwartz, E.S. Lee and H. Song, Chem. Eng. J., 200, 654 (2012); https://doi.org/10.1016/j.cej.2012.06.126.
S. Ismadji, D.S. Tong, F.E.Soetaredjo, A.Ayucitra, W.H. Yu and C.H. Zhou, Appl. Clay Sci., 119, 146 (2016); https://doi.org/10.1016/j.clay.2015.08.022.