Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Reactions of Fe(III), Co(II) and Cu(II) Ions with 2-Salicylidene-4-aminophenyl Benzimidazole
Corresponding Author(s) : M. Chandrakala
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Reactions of Fe(III), Co(II) and Cu(II) ions with 2-salicylidene-4-aminophenyl benzimidazole (LH; SAPbzlH) in ethanol/acetone produced complexes of the formulae [FeCl(L)2]2·2H2O; [FeBr2(LH)2]Br; [MCl(L)]2·0.5H2O (M = Co, Cu), [M(L)H2O]2Br2·nH2O (M = Co, n = 0 ; M = Cu, n = 2); [Co(LH)2]n. The metal complexes were characterized by elemental analysis, molar conductance, IR, Far-IR, MS, AAS and TGA. The chloro complex of iron(III) is dimeric with dichloro bridge whereas the bromo complex is monomeric, the metal ion having an octahedral environment. The chloro complexes of Co(II) and Cu(II) are dimeric with bridging Schiff base and terminal halides, the metal ion being in a square planar environment. The bromo complexes of Co(II) and Cu(II) are dimeric with bridging Schiff base and terminal water molecule, the metal ion being in a square planar environment. Molar conductance measurements of the bromo complexes in DMSO has revealed 1:2 electrolytic behaviour. Cobalt acetate and perchlorate with SAPbzlH yielded polymeric complexes with ligand bridging. The magnetic susceptibility data have suggested tetrahedral environment around the metal ion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.F. Hasty, T.J. Colburn and D.N. Hendrickson, Inorg. Chem., 12, 2414 (1973); https://doi.org/10.1021/ic50128a039.
- W.J. Stratton and P.J. Ogren, Inorg. Chem., 9, 2588 (1970); https://doi.org/10.1021/ic50093a043.
- M.S. Ma and R.J. Angelici, Inorg. Chem., 19, 363 (1980); https://doi.org/10.1021/ic50204a017.
- B.M. Hoskins and D.G. Vince, Aust. J. Chem., 25, 2039 (1972); https://doi.org/10.1071/CH9722039.
- B. Longato, B. Corain, G.M. Bonora, G. Valle and G. Pilloni, Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, Martinus Nijhoff: Boston, pp. 705 (1988).
- T. Konno, K. Okamoto and J. Hidaka, Inorg. Chem., 31, 160 (1992); https://doi.org/10.1021/ic00028a005.
- T. Konno, K. Yonenobu, J. Hidaka and J. Okamoto, Inorg. Chem., 33, 861 (1994); https://doi.org/10.1021/ic00083a006.
- R.G. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
- M. Chandrakala, B.S. Sheshadri, N.M. Nanje Gowda, K.G.S. Murthy and K.R. Nagasundara, J. Chem. Res., 34, 576 (2010); https://doi.org/10.3184/030823410X12864689639476.
- M. Chandrakala, N.M. Nanje Gowda, K.G.S. Murthy and K.R. Nagasundara, Magn. Reson. Chem., 50, 335 (2012); https://doi.org/10.1002/mrc.2857.
- R.K. Dubey, J. Indian Chem. Soc., 83, 1087 (2006).
- M.A. Mendiola, J.R. Masaguer and C. Molleda, Synth. React. Inorg. Met.-Org. Chem., 22, 955 (1992); https://doi.org/10.1080/15533179208016604.
- J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Platinum Press: New York, pp. 206-207 (1971).
- N. Lehnert, F. Neese, R.Y.N. Ho, L. Que and E.I. Solomon, J. Am. Chem. Soc., 124, 10810 (2002); https://doi.org/10.1021/ja012621d.
- A.B.P. Leaver, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, p. 18, 498, 535, 587 (1968).
- P.M. Gurubaravaraj, Asian J. Chem., 16, 1009 (2004).
- H.S. Bhojya Naik, Siddaramaiah and P.G. Ramappa, Thermochim. Acta, 287, 279 (1996); https://doi.org/10.1016/S0040-6031(96)02998-X.
- B.N. Figgis and R.S. Nyholm, J. Chem. Soc., 338 (1959); https://doi.org/10.1039/JR9590000338.
- A.A.A. Abu-Hussen and W. Linert, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 39, 13 (2009); https://doi.org/10.1080/15533170802668157.
- R.L. De, M. Mandal, L. Roy, J. Mukherjee, R. Bhawal and K. Maiti, Indian J. Chem., 47A, 1480 (2008).
- R.L. Dutta and A. Syamal, Elements of Magnatochemistry, East-West Press: New Delhi, edn 2 (1993).
- L. Sacconi and L. Bertini, J. Am. Chem. Soc., 90, 5443 (1968); https://doi.org/10.1021/ja01022a020.
- B.N. Figgis, Introduction to Ligand Fields, InterScience Publisher: New York (1966).
- M. Tunçel and S. Serin, Transition Met. Chem., 31, 805 (2006); https://doi.org/10.1007/s11243-006-0074-5.
- R.L. Carlin, ed.: R.L. Carlin, Transition Metal Chemistry, Marcel Dekker, Inc.: New York, vol. 1, pp. 1-31 (1965).
- N. Nawar, M.A. Khattab and N.M. Hosny, Synth. React. Inorg. Met. Chem, 29, 1365 (1999); https://doi.org/10.1080/00945719909351705.
- K. Mohanan and B. Murukan, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 35, 837 (2005); https://doi.org/10.1080/15533170500357988.
References
E.F. Hasty, T.J. Colburn and D.N. Hendrickson, Inorg. Chem., 12, 2414 (1973); https://doi.org/10.1021/ic50128a039.
W.J. Stratton and P.J. Ogren, Inorg. Chem., 9, 2588 (1970); https://doi.org/10.1021/ic50093a043.
M.S. Ma and R.J. Angelici, Inorg. Chem., 19, 363 (1980); https://doi.org/10.1021/ic50204a017.
B.M. Hoskins and D.G. Vince, Aust. J. Chem., 25, 2039 (1972); https://doi.org/10.1071/CH9722039.
B. Longato, B. Corain, G.M. Bonora, G. Valle and G. Pilloni, Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, Martinus Nijhoff: Boston, pp. 705 (1988).
T. Konno, K. Okamoto and J. Hidaka, Inorg. Chem., 31, 160 (1992); https://doi.org/10.1021/ic00028a005.
T. Konno, K. Yonenobu, J. Hidaka and J. Okamoto, Inorg. Chem., 33, 861 (1994); https://doi.org/10.1021/ic00083a006.
R.G. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
M. Chandrakala, B.S. Sheshadri, N.M. Nanje Gowda, K.G.S. Murthy and K.R. Nagasundara, J. Chem. Res., 34, 576 (2010); https://doi.org/10.3184/030823410X12864689639476.
M. Chandrakala, N.M. Nanje Gowda, K.G.S. Murthy and K.R. Nagasundara, Magn. Reson. Chem., 50, 335 (2012); https://doi.org/10.1002/mrc.2857.
R.K. Dubey, J. Indian Chem. Soc., 83, 1087 (2006).
M.A. Mendiola, J.R. Masaguer and C. Molleda, Synth. React. Inorg. Met.-Org. Chem., 22, 955 (1992); https://doi.org/10.1080/15533179208016604.
J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Platinum Press: New York, pp. 206-207 (1971).
N. Lehnert, F. Neese, R.Y.N. Ho, L. Que and E.I. Solomon, J. Am. Chem. Soc., 124, 10810 (2002); https://doi.org/10.1021/ja012621d.
A.B.P. Leaver, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, p. 18, 498, 535, 587 (1968).
P.M. Gurubaravaraj, Asian J. Chem., 16, 1009 (2004).
H.S. Bhojya Naik, Siddaramaiah and P.G. Ramappa, Thermochim. Acta, 287, 279 (1996); https://doi.org/10.1016/S0040-6031(96)02998-X.
B.N. Figgis and R.S. Nyholm, J. Chem. Soc., 338 (1959); https://doi.org/10.1039/JR9590000338.
A.A.A. Abu-Hussen and W. Linert, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 39, 13 (2009); https://doi.org/10.1080/15533170802668157.
R.L. De, M. Mandal, L. Roy, J. Mukherjee, R. Bhawal and K. Maiti, Indian J. Chem., 47A, 1480 (2008).
R.L. Dutta and A. Syamal, Elements of Magnatochemistry, East-West Press: New Delhi, edn 2 (1993).
L. Sacconi and L. Bertini, J. Am. Chem. Soc., 90, 5443 (1968); https://doi.org/10.1021/ja01022a020.
B.N. Figgis, Introduction to Ligand Fields, InterScience Publisher: New York (1966).
M. Tunçel and S. Serin, Transition Met. Chem., 31, 805 (2006); https://doi.org/10.1007/s11243-006-0074-5.
R.L. Carlin, ed.: R.L. Carlin, Transition Metal Chemistry, Marcel Dekker, Inc.: New York, vol. 1, pp. 1-31 (1965).
N. Nawar, M.A. Khattab and N.M. Hosny, Synth. React. Inorg. Met. Chem, 29, 1365 (1999); https://doi.org/10.1080/00945719909351705.
K. Mohanan and B. Murukan, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 35, 837 (2005); https://doi.org/10.1080/15533170500357988.