Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Photocatalytic Activities of Ionic Liquid Assisted Preparation of TiO2 Nanoparticles
Corresponding Author(s) : J. Dai
Asian Journal of Chemistry,
Vol. 25 No. 5 (2013): Vol 25 Issue 5
Abstract
The well-crystallized anatasetitania nanoparticles were synthesized by one-step routes under low-temperature using room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) as an additional solvent with water. The photocatalytic properties of TiO2 nanoparticles were evaluated by photocatalytic degradation experiments of methyl orange. The TiO2-ionic liquid nanoparticles still hold a high photocatalytic activity after the catalyst was recycled 9 times. The TiO2 nanoparticles show a higher photocatalytic activity than the TiO2 with pure water and commercial TiO2 (P25), which may be related to the high crystallinity, the pure anatase phase, small size and the enhanced absorbability associated with the existence of [BMIM][BF4].
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lovas, R.D. Suenram and G.T. Fraser, J. Chem. Phys., 88, 722 (1988); M.R. Hoffmann, S.T. Martin, W. Cho and D.W. Bahnemann, Chem. Rev., 95, 56 (1995).
- L. Diamandescu, F. Vasiliu, D. Tarabasanu-Mihaila, M. Feder, A.M. Vlaicu, C.M. Teodorescu, D. Macovei, I. Enculescu, V. Parvulescu and E. Vasile, Mater. Chem. Phys., 112, 146 (2008).
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1 (2000).
- H. Yaghoubi, N. Taghavinia and E.K. Alamdari, Surf. Coat. Technol., 204, 1562 (2010).
- C. He, Y. Xiong, J. Chen, C. Zha and X. Zhu, J. Photochem. Photobiol. A, 157, 71 (2003).
- W.Y. Ahn, S.A. Sheeley, T. Rajh and D.M. Cropek, Appl. Catal. B: Environ., 74, 103 (2007).
- B. Kraeutler and A.J. Bard, J. Am. Chem. Soc., 100, 5985 (1978).
- J. Lee and W. Choi, J. Phys. Chem. B, 109, 7399 (2005).
- A.O. Ibhadon, G.M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris, J. Photochem. Photobio. A: Chem., 197, 321 (2008).
- X. Yan, D. Pan, Z. Li, Y. Liu, J. Zhang, G. Xu and M. Wu, Mater. Lett., 64, 1833 (2010).
- M.A. Khan, H.T. Jung and O.B. Yang, J. Phys. Chem. B, 110, 6626 (2006).
- P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3772 (2000).
- T. Welton, Chem. Rev., 99, 2071 (1999).
- M. Antonietti, D.B. Kuang, B. Smarsly and B.Z. Yong, Angew. Chem. Int. Ed., 43, 4988 (2004).
- C.W. Scheeren, G. Machado, J. Dupont, P. F. P. Fichtne and S.R. Texeir, Inorg. Chem., 42, 4738 (2003).
- R. Tatumi and H. Fujihara, Chem. Commun., 83 (2005).
- C.W. Scheeren, G. Machado, S.R. Teixeira, J. Morais, J.B. Domingos and J. Dupont, J. Phys. Chem. B, 110, 13011 (2006).
- W. Dobbs, J.M. Suisse, L. Douce and R. Welter, Angew. Chem. Int..Ed., 45, 4179 (2006).
- A. Taubert, Angew. Chem. Int. Ed., 43, 5380 (2004).
- D. Fang, J. Cheng, K. Gong, Q. Shi, X. Zhou and Z. Liu, J. Fluorine Chem., 129, 108 (2008).
- H. Chuang and D. Chen, Nanotechnology, 20, 105704 (2009).
References
J. Lovas, R.D. Suenram and G.T. Fraser, J. Chem. Phys., 88, 722 (1988); M.R. Hoffmann, S.T. Martin, W. Cho and D.W. Bahnemann, Chem. Rev., 95, 56 (1995).
L. Diamandescu, F. Vasiliu, D. Tarabasanu-Mihaila, M. Feder, A.M. Vlaicu, C.M. Teodorescu, D. Macovei, I. Enculescu, V. Parvulescu and E. Vasile, Mater. Chem. Phys., 112, 146 (2008).
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1 (2000).
H. Yaghoubi, N. Taghavinia and E.K. Alamdari, Surf. Coat. Technol., 204, 1562 (2010).
C. He, Y. Xiong, J. Chen, C. Zha and X. Zhu, J. Photochem. Photobiol. A, 157, 71 (2003).
W.Y. Ahn, S.A. Sheeley, T. Rajh and D.M. Cropek, Appl. Catal. B: Environ., 74, 103 (2007).
B. Kraeutler and A.J. Bard, J. Am. Chem. Soc., 100, 5985 (1978).
J. Lee and W. Choi, J. Phys. Chem. B, 109, 7399 (2005).
A.O. Ibhadon, G.M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris, J. Photochem. Photobio. A: Chem., 197, 321 (2008).
X. Yan, D. Pan, Z. Li, Y. Liu, J. Zhang, G. Xu and M. Wu, Mater. Lett., 64, 1833 (2010).
M.A. Khan, H.T. Jung and O.B. Yang, J. Phys. Chem. B, 110, 6626 (2006).
P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3772 (2000).
T. Welton, Chem. Rev., 99, 2071 (1999).
M. Antonietti, D.B. Kuang, B. Smarsly and B.Z. Yong, Angew. Chem. Int. Ed., 43, 4988 (2004).
C.W. Scheeren, G. Machado, J. Dupont, P. F. P. Fichtne and S.R. Texeir, Inorg. Chem., 42, 4738 (2003).
R. Tatumi and H. Fujihara, Chem. Commun., 83 (2005).
C.W. Scheeren, G. Machado, S.R. Teixeira, J. Morais, J.B. Domingos and J. Dupont, J. Phys. Chem. B, 110, 13011 (2006).
W. Dobbs, J.M. Suisse, L. Douce and R. Welter, Angew. Chem. Int..Ed., 45, 4179 (2006).
A. Taubert, Angew. Chem. Int. Ed., 43, 5380 (2004).
D. Fang, J. Cheng, K. Gong, Q. Shi, X. Zhou and Z. Liu, J. Fluorine Chem., 129, 108 (2008).
H. Chuang and D. Chen, Nanotechnology, 20, 105704 (2009).