Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Excess Sludge Reduction in Conventional Activated Sludge Process by Heating Returned Sludge
Corresponding Author(s) : Afshin Takdastan
Asian Journal of Chemistry,
Vol. 25 No. 5 (2013): Vol 25 Issue 5
Abstract
The use of conventional activated sludge as a biological wastewater treatment process has been employed to treat a wide variety of wastewater. The ultimate disposal of excess sludge generated from activated sludge processes has been one of the most challenging problems for waste water treatment utilities in order to solve the problem of excess sludge production. This paper investigated the effect of temperature on excess sludge reduction in activated sludge process, therefore, returned sludge temperature was increased from 30 to 70 ºC, stepwise every 10 ºC at the time concentrating on each step for 1 h. After reaching steady state in the system, we made use of sampling and testing parameters such as COD, MLSS, MLVSS, SVI, BOD5 and yield coefficient. Results showed that increasing the temperature from 30 to 40 ºC increased the yield coefficient from 0.68 to 0.73. Further increase of the temperature up to 60 ºC reduced the yield coefficient to 0.33 and increased residual COD in the effluent from 89 to 195 mg/L, which is less than agricultural reuse standard. Also in this temperature, sludge reduction rate was about 46.8 % and SVI rate was about 44 mg/L. At 70 ºC increase in effluent COD and turbidity was noticed. It also did not meet the wastewater disposal standard and the wastewater gave out bad odor and had bad yield coefficient.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Low, W. Chase and A. Howard, Water Res., 33, 1119 (1999).
- Y. Wei, Y. Wang, X. Guo and J. Liu, J. Hazard. Mater., 163, 87 (2009).
- S. Yan, T. Zheng, H. Li, A. Zhang, X.H. Xing, L.B. Chu, G. Ding, X.L. Sun and B. Jurcik, Bioresour. Technol., 100, 5002 (2009).
- Y. Tian, Y. Lu, L. Chen and H. Lin, Bioresour. Technol., 101, 6069 (2010).
- C. Rai and P. Rao, Clean Technol. Environ. Policy, 11, 437 (2009).
- A. Prorot, C. Eskicioglu, R. Droste, C. Dagot and P. Leprat, J. Ind. Microbiol. Biotechnol., 35, 1261 (2008).
- S. Yan, K. Miyanaga, X.H. Xing and Y. Tanji, Biochem. Engg. J., 39, 598 (2008).
- Y. Wei, H. Van, T. Renze, A.R. Borger, D.H. Eikelboom and Y. Fan, Water Res., 37, 4453 (2003).
- G. Muyzer, E. Wall and A. Uitterlinden, Environ. Microbiol., 59, 695 (1993).
- M. Rocher, G. Goma, B.A. Pilas, L. Louvel and J.L. Rols, Appl. Microbiol. Biotechnol., 51, 883 (1999).
- M. Rocher, G. Roux, G. Goma, B.A. Pilas, L. Louvel and J.L. Rols, Excess Sludge Reduction in Activated Sludge Processes by Integrating Biomass Alkaline Heat Treatment. London, ROYAUME-UNI, IWA Publishing (2001).
- A. Canales, A. Pareilleux, J. Rols, G. Goma and A. Huyard, Water Sci. Technol., 30, 97 (1994).
- Apha, AWWA, WPCF, Standard Method for the Examination of Water and Wastewater NW, Washington D.C; edn. 22 (1992).
- M. Pazoki, A. Takdastan and N. Jafarzadeh, Asian J. Chem., 22, 1751 (2010).
- S.L.A. Deleris, V. Geaugey and T. Lebrunn, Innovative Strategies for the Reduction of Sludge Production in Activated Sludge Plant: BIOLYSIS O and BIOLYSIS E Proceeding of the International Water Association (IWA) Specialist Conference: Biosolids Trondheim, Norway (2003).
References
E. Low, W. Chase and A. Howard, Water Res., 33, 1119 (1999).
Y. Wei, Y. Wang, X. Guo and J. Liu, J. Hazard. Mater., 163, 87 (2009).
S. Yan, T. Zheng, H. Li, A. Zhang, X.H. Xing, L.B. Chu, G. Ding, X.L. Sun and B. Jurcik, Bioresour. Technol., 100, 5002 (2009).
Y. Tian, Y. Lu, L. Chen and H. Lin, Bioresour. Technol., 101, 6069 (2010).
C. Rai and P. Rao, Clean Technol. Environ. Policy, 11, 437 (2009).
A. Prorot, C. Eskicioglu, R. Droste, C. Dagot and P. Leprat, J. Ind. Microbiol. Biotechnol., 35, 1261 (2008).
S. Yan, K. Miyanaga, X.H. Xing and Y. Tanji, Biochem. Engg. J., 39, 598 (2008).
Y. Wei, H. Van, T. Renze, A.R. Borger, D.H. Eikelboom and Y. Fan, Water Res., 37, 4453 (2003).
G. Muyzer, E. Wall and A. Uitterlinden, Environ. Microbiol., 59, 695 (1993).
M. Rocher, G. Goma, B.A. Pilas, L. Louvel and J.L. Rols, Appl. Microbiol. Biotechnol., 51, 883 (1999).
M. Rocher, G. Roux, G. Goma, B.A. Pilas, L. Louvel and J.L. Rols, Excess Sludge Reduction in Activated Sludge Processes by Integrating Biomass Alkaline Heat Treatment. London, ROYAUME-UNI, IWA Publishing (2001).
A. Canales, A. Pareilleux, J. Rols, G. Goma and A. Huyard, Water Sci. Technol., 30, 97 (1994).
Apha, AWWA, WPCF, Standard Method for the Examination of Water and Wastewater NW, Washington D.C; edn. 22 (1992).
M. Pazoki, A. Takdastan and N. Jafarzadeh, Asian J. Chem., 22, 1751 (2010).
S.L.A. Deleris, V. Geaugey and T. Lebrunn, Innovative Strategies for the Reduction of Sludge Production in Activated Sludge Plant: BIOLYSIS O and BIOLYSIS E Proceeding of the International Water Association (IWA) Specialist Conference: Biosolids Trondheim, Norway (2003).