Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Intraparticle Mass Transfer Model of Ethylene Polymerization Catalyzed by Supported Metallocene
Corresponding Author(s) : Kai Huang
Asian Journal of Chemistry,
Vol. 25 No. 4 (2013): Vol 25 Issue 4
Abstract
The slurry ethylene polymerization catalyzed with a silica-supported metallocene catalyst was simulated based on a modified multigrain model. The modified model combined with the intrinsic reaction investigation was used to analyze the catalyst fragmentation and the polyethylene intraparticle mass transfer. The model can also be used to calculate the monomer concentration and the evolution of the macroparticle size. Furthermore, the model can also be used to predict the changes of the particle porosity and the monomer concentration distribution. The results show that the intraparticle mass transfer resistance has great effect on the polymerization and the catalyst fragmentation will take place shell by shell from the surface to the center after 200 s of the polymerization time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.F. McKenna and J.B.P. Soares, Chem. Eng. Sci., 56, 3931 (2001).
- J.W. Begley, J. Polym. Sci. A, 4, 319 (1966).
- W.R. Schmeal and J.R. Street, AIChE J., 17, 1188 (1971).
- L. Böhm, Chem. Ing. Technol., 56, 674 (1984) (in German).
- E.J. Nagel, V.A. Krillov and W.H. Ray, Ind. Eng. Chem. Prod. Res. Dev., 19, 372 (1980).
- F. Bonini, J. Polym. Sci. A: Polym. Chem., 33, 2393 (1995).
- A. Alexiadis, C. Andes, D. Ferrari, F. Korber, K. Hauschild, M. Bochmann and G. Fink, Macromol. Mater. Eng., 289, 457 (2004).
- A. Alexiadis and C. Andes, Appl. Math. Model, 32, 99 (2008).
- D.A. Estenoz and M.G. Chiovetta, J. Appl. Polym. Sci., 81, 285 (2001).
- G. Fink, B. Steinmetz, J. Zechlin, C. Przybyla and B. Tesche, Chem. Rev., 100, 1377 (2000).
- A. Yiagopoulos, H. Yiannoulakis, V. Dimos and C. Kiparissides, Chem. Eng. Sci., 56, 3979 (2001).
- S. Floyd, T. Herskanen, T.W. Taylor, G.E. Mann and W.H. Ray, J. Appl. Polym. Sci., 33, 1021 (1987).
- P. Sarkar and S.K. Gupta, Polymer, 32, 2842 (1991).
- P. Sarkar and S.K. Gupta, Polymer, 33, 1477 (1992).
- U.P. Veera and G. Weickert, AIChE J., 48, 1062 (2002).
- T.F. McKenna and J.B.P. Soares, J. Appl. Polym. Sci., 63, 315 (1997).
- M.A. Ferrero and M.G. Chiovetta, Polym. Eng. Sci., 27, 1436 (1987).
- A. Hutchinson, J. Appl. Polym. Sci., 44, 1389 (1992).
- F. Floyd, J. Appl. Polym. Sci., 32, 2935 (1986).
- S. Knoke, F. Korber, G. Fink and B. Tesche, Macromol. Chem. Phys., 204, 607 (2003).
References
T.F. McKenna and J.B.P. Soares, Chem. Eng. Sci., 56, 3931 (2001).
J.W. Begley, J. Polym. Sci. A, 4, 319 (1966).
W.R. Schmeal and J.R. Street, AIChE J., 17, 1188 (1971).
L. Böhm, Chem. Ing. Technol., 56, 674 (1984) (in German).
E.J. Nagel, V.A. Krillov and W.H. Ray, Ind. Eng. Chem. Prod. Res. Dev., 19, 372 (1980).
F. Bonini, J. Polym. Sci. A: Polym. Chem., 33, 2393 (1995).
A. Alexiadis, C. Andes, D. Ferrari, F. Korber, K. Hauschild, M. Bochmann and G. Fink, Macromol. Mater. Eng., 289, 457 (2004).
A. Alexiadis and C. Andes, Appl. Math. Model, 32, 99 (2008).
D.A. Estenoz and M.G. Chiovetta, J. Appl. Polym. Sci., 81, 285 (2001).
G. Fink, B. Steinmetz, J. Zechlin, C. Przybyla and B. Tesche, Chem. Rev., 100, 1377 (2000).
A. Yiagopoulos, H. Yiannoulakis, V. Dimos and C. Kiparissides, Chem. Eng. Sci., 56, 3979 (2001).
S. Floyd, T. Herskanen, T.W. Taylor, G.E. Mann and W.H. Ray, J. Appl. Polym. Sci., 33, 1021 (1987).
P. Sarkar and S.K. Gupta, Polymer, 32, 2842 (1991).
P. Sarkar and S.K. Gupta, Polymer, 33, 1477 (1992).
U.P. Veera and G. Weickert, AIChE J., 48, 1062 (2002).
T.F. McKenna and J.B.P. Soares, J. Appl. Polym. Sci., 63, 315 (1997).
M.A. Ferrero and M.G. Chiovetta, Polym. Eng. Sci., 27, 1436 (1987).
A. Hutchinson, J. Appl. Polym. Sci., 44, 1389 (1992).
F. Floyd, J. Appl. Polym. Sci., 32, 2935 (1986).
S. Knoke, F. Korber, G. Fink and B. Tesche, Macromol. Chem. Phys., 204, 607 (2003).