Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Transition Metal Ion Chelating of Some Coumarin Antioxidants and the Interaction with Bovine Serum Albumin
Corresponding Author(s) : Xianghui Yi
Asian Journal of Chemistry,
Vol. 25 No. 4 (2013): Vol 25 Issue 4
Abstract
To investigate whether the coumarins antioxidants 1-14 may exert their antioxidant effect through transition metal ion chelation, the copper and ferrous chelating properties with coumarins were studied. It was found from fluorescence spectra that the binding constants Ka of coumarins 1-14 were in the range of 1.25 × 103 to 4.46 × 105 M-1, which indicated that the transition ion chelation play an important role in their antioxidant abilities. The interaction of coumarins 1-14 with bovine serum albumin was also studied by fluorescence spectra, since that the interaction of drugs with bovine serum albumin may have important influence on the drugs' pharmacology and pharmacodynamics. The results showed that the probable mechanism of the coumarins 1-14 interaction with bovine serum albumin was a static process and the binding constants Ka were 5.96 × 104 to 5.22 × 106 M-1, demonstrating a strong binding between coumarins 1-14 and bovine serum albumin. In addition, the binding numbers of coumarins 1-14 with transition metal ion and bovine serum albumin were determined to be 1, respectively, suggesting that each unit of coumarins 1-14 can bind with a unit of transition metal ion and a unit of bovine serum albumin. All the results may provide important information for the rational design of other analogous new antioxidants and drugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Hipkiss, Mechan. Age. Develop., 126, 1034 (2005).
- B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine. Oxford University Press, Oxford (1999).
- C.A. Perez, Y. Wei and M. Guo, J. Inorg. Biochem., 103, 326 (2009).
- Y.K. Tyagi, A. Kumar, H.G. Raj, P. Vohra, G. Gupta, R. Kumari, P. Kumar and R.K. Gupta, Eur. J. Med. Chem., 40, 413(2005).
- Y. Zhang, B.Q. Zou, Z.F. Chen, Y.M. Pan, H.S. Wang, H. Liang and X.H. Yi, Bioorg. Med. Chem. Lett., 21, 6811 (2011).
- K.M. Riedl and A.E. Hagerman, J. Agric. Food Chem., 49, 4917 (2001).
- M.J.T.J. Arts, G.R.M.M. Haenen, L.C. Wilms, S.A.J.N. Beetstra, C.G.M. Heijnen, H.P. Voss and A. Bast, J. Agric. Food Chem., 50, 1184 (2002).
- C.V. Kumar and A. Buranaprapuk, Angew. Chem. Int. Ed. Engl., 36, 2085 (1997).
- M.R. Eftink, in ed.: T.G. Dewey, Fluorescence Quenching Reactions, Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, New York: Plenum Press, pp. 1-44 (1991).
- J.R. Lakowica and G. Weber, Biochemistry, 12, 4161 (1973).
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy. New York: Plenum Press, p. 698 (1999).
- B.N. Ames, M.K. Shigenaga and T.M. Hagen, Proc. Nat. Acad. Sci. USA, 90, 7915 (1993).
- A.A. Horton and S. Fairhurst, Crit. Rev. Toxicol., 18, 27 (1987).
- H.L. Wang, Z.Y. Yang and B.D. Wang, Transition Met. Chem., 31, 470 (2006).
References
A.R. Hipkiss, Mechan. Age. Develop., 126, 1034 (2005).
B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine. Oxford University Press, Oxford (1999).
C.A. Perez, Y. Wei and M. Guo, J. Inorg. Biochem., 103, 326 (2009).
Y.K. Tyagi, A. Kumar, H.G. Raj, P. Vohra, G. Gupta, R. Kumari, P. Kumar and R.K. Gupta, Eur. J. Med. Chem., 40, 413(2005).
Y. Zhang, B.Q. Zou, Z.F. Chen, Y.M. Pan, H.S. Wang, H. Liang and X.H. Yi, Bioorg. Med. Chem. Lett., 21, 6811 (2011).
K.M. Riedl and A.E. Hagerman, J. Agric. Food Chem., 49, 4917 (2001).
M.J.T.J. Arts, G.R.M.M. Haenen, L.C. Wilms, S.A.J.N. Beetstra, C.G.M. Heijnen, H.P. Voss and A. Bast, J. Agric. Food Chem., 50, 1184 (2002).
C.V. Kumar and A. Buranaprapuk, Angew. Chem. Int. Ed. Engl., 36, 2085 (1997).
M.R. Eftink, in ed.: T.G. Dewey, Fluorescence Quenching Reactions, Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, New York: Plenum Press, pp. 1-44 (1991).
J.R. Lakowica and G. Weber, Biochemistry, 12, 4161 (1973).
J.R. Lakowicz, Principles of Fluorescence Spectroscopy. New York: Plenum Press, p. 698 (1999).
B.N. Ames, M.K. Shigenaga and T.M. Hagen, Proc. Nat. Acad. Sci. USA, 90, 7915 (1993).
A.A. Horton and S. Fairhurst, Crit. Rev. Toxicol., 18, 27 (1987).
H.L. Wang, Z.Y. Yang and B.D. Wang, Transition Met. Chem., 31, 470 (2006).