Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photoelectrochemical Study and Hydrothermal Synthesis of Bismuth Phosphate Nanorods
Corresponding Author(s) : Ling Wang
Asian Journal of Chemistry,
Vol. 25 No. 4 (2013): Vol 25 Issue 4
Abstract
Bismuth phosphate nanorods with the diameter about 30 nm and length about 1-2 μm were synthesized by a simple hydrothermal process. The morphology and crystal structure were characterized by SEM, HRTEM and XRD. The results show that the BiPO4 nanorods that have single-crystalline nature with a preferential growth oriented along the [100] direction. Photoelectrochemical measurements show they may be more efficient in photocatalytic degradation of organic pollutants and decomposition of water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995).
- F. Amano, K. Nogami, R. Abe and B. Ohtani, J. Phys. Chem. C, 112, 9320 (2008).
- Y. Ding, Y. Wan, Y.L. Min, W. Zhang and S.H. Yu, Inorg. Chem., 47, 7813 (2008).
- M. Machida, J. Yabunaka and T. Kijima,Chem. Commun., 19, 1939 (1999).
- H. Mizoguchi, P.M. Woodward, S.H. Byeon and J.B. Parise, J. Am. Chem. Soc., 126, 3175 (2004).
- M. Yada, Y. Inoue, M. Uota, T. Torikai, T. Watari, I. Noda and T. Hotokebuchi, Langmuir, 23, 2815 (2007).
- A. Yamakata, T. Ishibashi, H. Kato, A. Kudo and H. Onishi, J. Phys. Chem. B, 107, 14383 (2003).
- J. Tang, J.R. Durrant and D.R. Klug, J. Am. Chem. Soc., 130, 13885 (2008).
- T.S. Chang, G.J. Li, C.H. Shin, Y.K. Lee and S.S. Yun, Catal. Lett., 68, 229 (2000).
- K. Iitaka, Y. Tani and Y. Umezawa, Anal. Chim. Acta, 77, 338 (1997).
- S. Kalaiselvan and R.K. Jeevanram, J. Radioanal. Nucl. Chem., 240, 277 (1999).
- T. Jermoumi, M. Hafid, M. Et-tabirou, M. Taibi, H. El-Qadim and N. Toreis, Mater. Sci. Eng. B, 85, 28 (2001).
- M.Y. Guan, J.H. Sun, F.F. Tao and X. Zheng, Cryst. Growth Design, 8, 2695 (2008).
- C.S. Pan and Y.F. Zhu, Environ. Sci. Technol., 44, 5570 (2010)
References
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995).
F. Amano, K. Nogami, R. Abe and B. Ohtani, J. Phys. Chem. C, 112, 9320 (2008).
Y. Ding, Y. Wan, Y.L. Min, W. Zhang and S.H. Yu, Inorg. Chem., 47, 7813 (2008).
M. Machida, J. Yabunaka and T. Kijima,Chem. Commun., 19, 1939 (1999).
H. Mizoguchi, P.M. Woodward, S.H. Byeon and J.B. Parise, J. Am. Chem. Soc., 126, 3175 (2004).
M. Yada, Y. Inoue, M. Uota, T. Torikai, T. Watari, I. Noda and T. Hotokebuchi, Langmuir, 23, 2815 (2007).
A. Yamakata, T. Ishibashi, H. Kato, A. Kudo and H. Onishi, J. Phys. Chem. B, 107, 14383 (2003).
J. Tang, J.R. Durrant and D.R. Klug, J. Am. Chem. Soc., 130, 13885 (2008).
T.S. Chang, G.J. Li, C.H. Shin, Y.K. Lee and S.S. Yun, Catal. Lett., 68, 229 (2000).
K. Iitaka, Y. Tani and Y. Umezawa, Anal. Chim. Acta, 77, 338 (1997).
S. Kalaiselvan and R.K. Jeevanram, J. Radioanal. Nucl. Chem., 240, 277 (1999).
T. Jermoumi, M. Hafid, M. Et-tabirou, M. Taibi, H. El-Qadim and N. Toreis, Mater. Sci. Eng. B, 85, 28 (2001).
M.Y. Guan, J.H. Sun, F.F. Tao and X. Zheng, Cryst. Growth Design, 8, 2695 (2008).
C.S. Pan and Y.F. Zhu, Environ. Sci. Technol., 44, 5570 (2010)