Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Corrosion Inhibition Mechanism of Benzimidazole and Its Derivatives on Mild Steel: Quantitative Structure and Property Relationship Study
Corresponding Author(s) : Guangzeng Liu
Asian Journal of Chemistry,
Vol. 25 No. 4 (2013): Vol 25 Issue 4
Abstract
A theoretical method named as quantitative structure and property relationship (QSPR) was used to investigate corrosion inhibition efficiency of benzimidazole and its derivatives on mild steel in 1 M hydrochloric acid. Some electronic, spatial and thermodynamic properties were selected as descriptors to build relationships between inhibition efficiency and micro-structure information. These descriptors include frontier molecular orbits (LUMO and HOMO), molecular surface area and molecular volume, molecular flexibility, etc. The relationships between descriptors and inhibition efficiency were described by several equations, respectively. Furthermore, an overall equation was built up to describe accurately the relationship between inhibition efficiency and most of the descriptors. These equations were proven to be successful in explaining the corrosion inhibition mechanism of benzimidazole and its derivatives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Bao, C.X. Zhang, W.B. Yang, J.T. Hu and X.M. Sun, Sci. Total Environ., 419, 144 (2012).
- W.N. Yu, J.T. Hu, F. Xu, X.Y. Sun, R. Gao, Q.Z. Zhang and W.X. Wang, Environ. Sci. Technol., 45, 1917 (2011).
- F. Xu, W.N. Yu, Q. Zhou, R. Gao, X.Y. Sun, Q.Z. Zhang and W.X. Wang, Environ. Sci. Technol., 45, 643 (2011).
- C.X. Zhang, T.L. Sun and X.M. Sun, Environ. Sci. Technol., 45, 4756 (2011).
- K.F. Khaled, K. Babic-Samardzija and N. Hackerman, Electrochim. Acta, 50, 2515 (2005).
- A. Popova, M. Christov, S. Raicheva and E. Sokolova, Corros. Sci., 46, 1333 (2004).
- CERIUS2, version 4.6; Molecular Simulations Inc.: San Diego, CA, (2002).
- H. Sun, J. Phys. Chem. B, 102, 7338 (1998).
- D. Rogers and A.J. Hopfinger, J. Chem. Inf. Comput. Sci., 34, 854 (1994).
- J. Fang and J. Li, J. Mol. Struct. (Theochem.), 593, 179 (2002).
- H. Shokry, M. Yuasa, I. Sekine, R.M. Isaa, H.Y. El-Baradie and G.K. Gomma, Corros. Sci., 40, 2173 (1998).
- N. Khalil, Electrochim. Acta, 48, 2635 (2003).
- A. Popova, M. Christov and T. Deligeorgiev, Corrosion, 59, 756 (2003)
References
Y. Bao, C.X. Zhang, W.B. Yang, J.T. Hu and X.M. Sun, Sci. Total Environ., 419, 144 (2012).
W.N. Yu, J.T. Hu, F. Xu, X.Y. Sun, R. Gao, Q.Z. Zhang and W.X. Wang, Environ. Sci. Technol., 45, 1917 (2011).
F. Xu, W.N. Yu, Q. Zhou, R. Gao, X.Y. Sun, Q.Z. Zhang and W.X. Wang, Environ. Sci. Technol., 45, 643 (2011).
C.X. Zhang, T.L. Sun and X.M. Sun, Environ. Sci. Technol., 45, 4756 (2011).
K.F. Khaled, K. Babic-Samardzija and N. Hackerman, Electrochim. Acta, 50, 2515 (2005).
A. Popova, M. Christov, S. Raicheva and E. Sokolova, Corros. Sci., 46, 1333 (2004).
CERIUS2, version 4.6; Molecular Simulations Inc.: San Diego, CA, (2002).
H. Sun, J. Phys. Chem. B, 102, 7338 (1998).
D. Rogers and A.J. Hopfinger, J. Chem. Inf. Comput. Sci., 34, 854 (1994).
J. Fang and J. Li, J. Mol. Struct. (Theochem.), 593, 179 (2002).
H. Shokry, M. Yuasa, I. Sekine, R.M. Isaa, H.Y. El-Baradie and G.K. Gomma, Corros. Sci., 40, 2173 (1998).
N. Khalil, Electrochim. Acta, 48, 2635 (2003).
A. Popova, M. Christov and T. Deligeorgiev, Corrosion, 59, 756 (2003)