Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Mercury(II) through Adsorption on Titania Nanofibers
Corresponding Author(s) : M. Siraj Alam
Asian Journal of Chemistry,
Vol. 28 No. 2 (2016): Vol 28 Issue 2
Abstract
Titania nanofibers were synthesized using a combination of sol-gel and electro-spinning techniques followed by calcination to eliminate organic phase. Effects of precursor and polymer concentration and temperature on fiber morphology were studied. The BET adsorption, FTIR spectroscopy, SEM and XPS techniques were used to characterize titania nanofibers. The obtained fibers were properly aligned and smooth. Presence of titanium(IV) and Ti-O bonds were confirmed. The fibers exhibited a large surface area (740.2 m2/g) and high uptake efficiency (95.5 %) for mercury(II). Adsorption equilibrium obeyed Freundlich isotherm and process followed pseudo second order kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Firouzzare and Q. Wang, Talanta, 101, 261 (2012); doi:10.1016/j.talanta.2012.09.023.
- M. Liu, L.A. Hou, B. Xi, Y. Zhao and X. Xia, Appl. Surf. Sci., 273, 706 (2013); doi:10.1016/j.apsusc.2013.02.116.
- X.Y. Zhang, Q.C. Wang, S.Q. Zhang, X.J. Sun and Z.S. Zhang, J. Hazard. Mater.,168, 1575 (2009); doi:10.1016/j.jhazmat.2009.03.050.
- A. Chojnacki, K. Chojnacka, J. Hoffmann and H. Górecki, Miner. Eng., 17, 933 (2004); doi:10.1016/j.mineng.2004.03.002.
- M.F. Yardim, T. Budinova, E. Ekinci, N. Petrov, M. Razvigorova and V. Minkova, Chemosphere, 52, 835 (2003); doi:10.1016/S0045-6535(03)00267-4.
- Z. Ghasemi, A. Seif, T.S. Ahmadi, B. Zargar, F. Rashidi and G.M. Rouzbahani, Adv. Powder Technol., 23, 148 (2012); doi:10.1016/j.apt.2011.01.004.
- F.L. Fu and Q. Wang, J. Environ. Eng., 92, 407 (2011).
- Y.H. Wang, S.H. Lin and R.S. Juang, J. Hazard. Mater., 102, 291 (2003); doi:10.1016/S0304-3894(03)00218-8.
- K. Jainae, N. Sukpirom, S. Fuangswasdi and F. Unob, J. Ind. Eng. Chem., 23, 273 (2015); doi:10.1016/j.jiec.2014.08.028.
- D. Maksin, S. Kljajevic, M. Djolic, J. Markovic, B. Ekmescic, A. Onjia and A. Nastasovic, Hem. Ind., 66, 795 (2012); doi:10.2298/HEMIND121002112M.
- M.H. Kafshgari, M. Mansouri, M. Khorram and S.R. Kashani, Int. J. Ind. Chem., 4, 5 (2013); doi:10.1186/2228-5547-4-5.
- R. Subha and C. Namasivayam, J. Environ. Eng. Manage., 18, 275 (2008).
- A. Henglein, Chem. Rev., 89, 1861 (1989); doi:10.1021/cr00098a010.
- M.S.P. Francisco, V.R. Mastelaro, A.O. Florentino and D. Bazin, Top. Catal., 18, 105 (2002); doi:10.1023/A:1013845314192.
- K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa and S. Shiratori, Nanotechnology, 17, 1026 (2006); doi:10.1088/0957-4484/17/4/030.
- J.R. Sohn and H.J. Jang, J. Catal., 132, 563 (1991); doi:10.1016/0021-9517(91)90172-Z.
- P. Murugavel, M. Kalaiselvam, A.R. Raju and C.N.R. Rao, J. Mater. Chem., 7, 1433 (1997); doi:10.1039/a700301c.
- D. Li and Y. Xia, Nano Lett., 3, 555 (2003); doi:10.1021/nl034039o.
- V. Tomer, R. Teye-Mensah, J.C. Tokash, N. Stojilovic, W. Kataphinan, E.A. Evans, G.G. Chase, R.D. Ramsier, D.J. Smith and D.H. Reneker, Sol. Energy Mater. Sol. Cells, 85, 477 (2005); doi:10.1016/j.solmat.2004.04.019.
- S.K. Pradhan, P.J. Reucroft, F. Yang and A. Dozier, J. Cryst. Growth, 256, 83 (2003); doi:10.1016/S0022-0248(03)01339-3.
- D. Li and Y. Xia, J. Adv. Mater., 16, 1151 (2004); doi:10.1002/adma.200400719.
- P. Liu, W. Cai, M. Fang, Z. Li, H. Zeng, J. Hu, X. Luo and W. Jing, Nanotechnology, 20, 285707 (2009); doi:10.1088/0957-4484/20/28/285707.
- W. Hu, L. Li, G. Li, C. Tang and L. Sun, Cryst. Growth Des., 9, 3676 (2009); doi:10.1021/cg9004032.
- P.J. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira and T. Trindade, J. Colloid Interf. Sci., 345, 234 (2010); doi:10.1016/j.jcis.2010.01.087.
- B. Dou, V. Dupont, W. Pan and B. Chen, Chem. Eng. J., 166, 631 (2011); doi:10.1016/j.cej.2010.11.035.
- J. Song, H. Kong and J. Jang, J. Colloid Interf. Sci., 359, 505 (2011); doi:10.1016/j.jcis.2011.04.034.
- S. Li, X. Yue, Y. Jing, S. Bai and Z. Dai, Colloids Surf. A, 380, 229 (2011); doi:10.1016/j.colsurfa.2011.02.027.
- N. Chauhan, S. Gupta, N. Singh, S. Singh, S.S. Islam, K.N. Sood and R. Pasricha, J. Colloid Interf. Sci., 363, 42 (2011); doi:10.1016/j.jcis.2011.07.018.
- V. Baheti, V.V.T. Padil, J. Militky, M. Cernik and R. Mishra, J. Fiber Bioeng. Inform., 6, 175 (2013); doi:10.3993/jfbi06201306.
- Q.Z. Zhai, J. Chem. Pharm. Res., 6, 1310 (2014).
References
M. Firouzzare and Q. Wang, Talanta, 101, 261 (2012); doi:10.1016/j.talanta.2012.09.023.
M. Liu, L.A. Hou, B. Xi, Y. Zhao and X. Xia, Appl. Surf. Sci., 273, 706 (2013); doi:10.1016/j.apsusc.2013.02.116.
X.Y. Zhang, Q.C. Wang, S.Q. Zhang, X.J. Sun and Z.S. Zhang, J. Hazard. Mater.,168, 1575 (2009); doi:10.1016/j.jhazmat.2009.03.050.
A. Chojnacki, K. Chojnacka, J. Hoffmann and H. Górecki, Miner. Eng., 17, 933 (2004); doi:10.1016/j.mineng.2004.03.002.
M.F. Yardim, T. Budinova, E. Ekinci, N. Petrov, M. Razvigorova and V. Minkova, Chemosphere, 52, 835 (2003); doi:10.1016/S0045-6535(03)00267-4.
Z. Ghasemi, A. Seif, T.S. Ahmadi, B. Zargar, F. Rashidi and G.M. Rouzbahani, Adv. Powder Technol., 23, 148 (2012); doi:10.1016/j.apt.2011.01.004.
F.L. Fu and Q. Wang, J. Environ. Eng., 92, 407 (2011).
Y.H. Wang, S.H. Lin and R.S. Juang, J. Hazard. Mater., 102, 291 (2003); doi:10.1016/S0304-3894(03)00218-8.
K. Jainae, N. Sukpirom, S. Fuangswasdi and F. Unob, J. Ind. Eng. Chem., 23, 273 (2015); doi:10.1016/j.jiec.2014.08.028.
D. Maksin, S. Kljajevic, M. Djolic, J. Markovic, B. Ekmescic, A. Onjia and A. Nastasovic, Hem. Ind., 66, 795 (2012); doi:10.2298/HEMIND121002112M.
M.H. Kafshgari, M. Mansouri, M. Khorram and S.R. Kashani, Int. J. Ind. Chem., 4, 5 (2013); doi:10.1186/2228-5547-4-5.
R. Subha and C. Namasivayam, J. Environ. Eng. Manage., 18, 275 (2008).
A. Henglein, Chem. Rev., 89, 1861 (1989); doi:10.1021/cr00098a010.
M.S.P. Francisco, V.R. Mastelaro, A.O. Florentino and D. Bazin, Top. Catal., 18, 105 (2002); doi:10.1023/A:1013845314192.
K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa and S. Shiratori, Nanotechnology, 17, 1026 (2006); doi:10.1088/0957-4484/17/4/030.
J.R. Sohn and H.J. Jang, J. Catal., 132, 563 (1991); doi:10.1016/0021-9517(91)90172-Z.
P. Murugavel, M. Kalaiselvam, A.R. Raju and C.N.R. Rao, J. Mater. Chem., 7, 1433 (1997); doi:10.1039/a700301c.
D. Li and Y. Xia, Nano Lett., 3, 555 (2003); doi:10.1021/nl034039o.
V. Tomer, R. Teye-Mensah, J.C. Tokash, N. Stojilovic, W. Kataphinan, E.A. Evans, G.G. Chase, R.D. Ramsier, D.J. Smith and D.H. Reneker, Sol. Energy Mater. Sol. Cells, 85, 477 (2005); doi:10.1016/j.solmat.2004.04.019.
S.K. Pradhan, P.J. Reucroft, F. Yang and A. Dozier, J. Cryst. Growth, 256, 83 (2003); doi:10.1016/S0022-0248(03)01339-3.
D. Li and Y. Xia, J. Adv. Mater., 16, 1151 (2004); doi:10.1002/adma.200400719.
P. Liu, W. Cai, M. Fang, Z. Li, H. Zeng, J. Hu, X. Luo and W. Jing, Nanotechnology, 20, 285707 (2009); doi:10.1088/0957-4484/20/28/285707.
W. Hu, L. Li, G. Li, C. Tang and L. Sun, Cryst. Growth Des., 9, 3676 (2009); doi:10.1021/cg9004032.
P.J. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira and T. Trindade, J. Colloid Interf. Sci., 345, 234 (2010); doi:10.1016/j.jcis.2010.01.087.
B. Dou, V. Dupont, W. Pan and B. Chen, Chem. Eng. J., 166, 631 (2011); doi:10.1016/j.cej.2010.11.035.
J. Song, H. Kong and J. Jang, J. Colloid Interf. Sci., 359, 505 (2011); doi:10.1016/j.jcis.2011.04.034.
S. Li, X. Yue, Y. Jing, S. Bai and Z. Dai, Colloids Surf. A, 380, 229 (2011); doi:10.1016/j.colsurfa.2011.02.027.
N. Chauhan, S. Gupta, N. Singh, S. Singh, S.S. Islam, K.N. Sood and R. Pasricha, J. Colloid Interf. Sci., 363, 42 (2011); doi:10.1016/j.jcis.2011.07.018.
V. Baheti, V.V.T. Padil, J. Militky, M. Cernik and R. Mishra, J. Fiber Bioeng. Inform., 6, 175 (2013); doi:10.3993/jfbi06201306.
Q.Z. Zhai, J. Chem. Pharm. Res., 6, 1310 (2014).