Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Physical Properties upon Hydrothermal Treatments on Titanium Dioxide Films
Corresponding Author(s) : A.K. Prodjosantoso
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Titanium dioxide is used extensively as semiconductor since more than five decades. Hydrothermal method is one the method which widely used for the synthesis of TiO2 have been widely developed. The effect of hydrothermal temperatures on the titanium dioxide films is investigated. The TiO2 films were prepared by hydrothermally layering a mixture of aquadest, HCl and titanium(IV) isopropoxide over indium tin oxide glass, at 110, 150, 180 and 200 ºC for 10 h. The film on the surface of indium tin oxide glass was calcined at 500 ºC and characterized by X-ray diffraction, UV-visible spectroscopy and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) methods. The study shows that the TiO2 has a spherical morphology with the size between 0.5 to 2 μm. The TiO2 consits of rutile and anatase with the particle size ranging from 16.97 to 24.10 nm and from 18.09 to 26.75 nm, respectively. The band gap energy of TiO2 is between 3.17 to 3.48 eV.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.G.V. Sampaio and M.O.A. González, Renew. Sustain. Energy Rev., 74, 590 (2017); https://doi.org/10.1016/j.rser.2017.02.081.
- C. Qin, W.-Y. Wong and L. Han, Nature, 8, 1706 (2013); https://doi.org/10.1002/asia.201300185.
- V.S. Mironov, T.N. Gasanov and V.M. Smirnov, Russ. J. Gen. Chem., 88, 345 (2018); https://doi.org/10.1134/S1070363218020263.
- T. Sugimoto, X. Zhou and A. Muramatsu, J. Colloid Interface Sci., 259, 43 (2003); https://doi.org/10.1016/S0021-9797(03)00036-5.
- X.W. Liu, L.Y. Shen and Y.H. Hu, Water Air Soil Pollut., 227, (2016); https://doi.org/10.1007/s11270-016-2841-z.
- W. Triampo, S. Yodyingyong, B. Panijpan and D. Triampo, J. Chem. Educ., 86, 950 (2009); https://doi.org/10.1021/ed086p950.
- F.-B. Zhang and H.-L. Li, Mater. Sci. Eng. C, 27, 80 (2007); https://doi.org/10.1016/j.msec.2006.02.001.
- N. Murakami, T.A. Kamai, T. Tsubota and T. Ohno, CrystEngComm, 12, 532 (2010); https://doi.org/10.1039/B913586N.
- Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu and X. Cao, Mater. Lett., 150, 62 (2015); https://doi.org/10.1016/j.matlet.2015.02.135.
- X. Zhao, M. Liu and Y. Zhu, Thin Solid Films, 515, 7127 (2007); https://doi.org/10.1016/j.tsf.2007.03.025.
- Y. Zou, X. Tan, T. Yu, Y. Li, Y. Li, R. Wang and L. Xue, Mater. Res. Bull., 80, 237 (2016); https://doi.org/10.1016/j.materresbull.2016.04.007.
- Z. Tan, K. Sato and S. Ohara, Adv. Powder Technol., 26, 296 (2015); https://doi.org/10.1016/j.apt.2014.10.011.
- Y. Xu, M. Zhang, M. Zhang, J. Lv, X. Jiang, G. He, X.P. Song and Z. Sun, Appl. Surf. Sci., 315, 299 (2014); https://doi.org/10.1016/j.apsusc.2014.07.110.
- S. Feng, J. Yang, M. Liu, H. Zhu, J. Zhang, G. Li, J. Peng and Q. Liu, Thin Solid Films, 520, 2745 (2012); https://doi.org/10.1016/j.tsf.2011.11.080.
- R.A. Spurr and H. Myers, Anal. Chem., 29, 760 (1957); https://doi.org/10.1021/ac60125a006.
- Y.F. Chen, C.Y. Lee, M.-Y. Yeng and H.-T. Chiu, J. Cryst. Growth, 247, 363 (2003); https://doi.org/10.1016/S0022-0248(02)01938-3.
- M.R. Usman, A.R. Noviyanti and D.R. Eddy, Indones. J. Chem, 17, 22 (2017); https://doi.org/10.22146/ijc.23548.
- R. Ahsan, M.Z.R. Khan and M.A. Basith, J. Nanophotonics, 11, 1 (2017); https://doi.org/10.1117/1.JNP.11.046016.
- C.L. Wang, W.S. Hwang, H.L. Chu, H.J. Lin, H.H. Ko and M.C. Wang, Ceram. Int., 42, 13136 (2016); https://doi.org/10.1016/j.ceramint.2016.05.101.
- T. Bak, W. Li, J. Nowotny, A.J. Atanacio and J. Davis, J. Phys. Chem. A, 119, 9465 (2015); https://doi.org/10.1021/acs.jpca.5b05031.
- T. Toyoda and I. Tsuboya, Rev. Sci. Instrum., 74, 782 (2003); https://doi.org/10.1063/1.1512984
References
P.G.V. Sampaio and M.O.A. González, Renew. Sustain. Energy Rev., 74, 590 (2017); https://doi.org/10.1016/j.rser.2017.02.081.
C. Qin, W.-Y. Wong and L. Han, Nature, 8, 1706 (2013); https://doi.org/10.1002/asia.201300185.
V.S. Mironov, T.N. Gasanov and V.M. Smirnov, Russ. J. Gen. Chem., 88, 345 (2018); https://doi.org/10.1134/S1070363218020263.
T. Sugimoto, X. Zhou and A. Muramatsu, J. Colloid Interface Sci., 259, 43 (2003); https://doi.org/10.1016/S0021-9797(03)00036-5.
X.W. Liu, L.Y. Shen and Y.H. Hu, Water Air Soil Pollut., 227, (2016); https://doi.org/10.1007/s11270-016-2841-z.
W. Triampo, S. Yodyingyong, B. Panijpan and D. Triampo, J. Chem. Educ., 86, 950 (2009); https://doi.org/10.1021/ed086p950.
F.-B. Zhang and H.-L. Li, Mater. Sci. Eng. C, 27, 80 (2007); https://doi.org/10.1016/j.msec.2006.02.001.
N. Murakami, T.A. Kamai, T. Tsubota and T. Ohno, CrystEngComm, 12, 532 (2010); https://doi.org/10.1039/B913586N.
Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu and X. Cao, Mater. Lett., 150, 62 (2015); https://doi.org/10.1016/j.matlet.2015.02.135.
X. Zhao, M. Liu and Y. Zhu, Thin Solid Films, 515, 7127 (2007); https://doi.org/10.1016/j.tsf.2007.03.025.
Y. Zou, X. Tan, T. Yu, Y. Li, Y. Li, R. Wang and L. Xue, Mater. Res. Bull., 80, 237 (2016); https://doi.org/10.1016/j.materresbull.2016.04.007.
Z. Tan, K. Sato and S. Ohara, Adv. Powder Technol., 26, 296 (2015); https://doi.org/10.1016/j.apt.2014.10.011.
Y. Xu, M. Zhang, M. Zhang, J. Lv, X. Jiang, G. He, X.P. Song and Z. Sun, Appl. Surf. Sci., 315, 299 (2014); https://doi.org/10.1016/j.apsusc.2014.07.110.
S. Feng, J. Yang, M. Liu, H. Zhu, J. Zhang, G. Li, J. Peng and Q. Liu, Thin Solid Films, 520, 2745 (2012); https://doi.org/10.1016/j.tsf.2011.11.080.
R.A. Spurr and H. Myers, Anal. Chem., 29, 760 (1957); https://doi.org/10.1021/ac60125a006.
Y.F. Chen, C.Y. Lee, M.-Y. Yeng and H.-T. Chiu, J. Cryst. Growth, 247, 363 (2003); https://doi.org/10.1016/S0022-0248(02)01938-3.
M.R. Usman, A.R. Noviyanti and D.R. Eddy, Indones. J. Chem, 17, 22 (2017); https://doi.org/10.22146/ijc.23548.
R. Ahsan, M.Z.R. Khan and M.A. Basith, J. Nanophotonics, 11, 1 (2017); https://doi.org/10.1117/1.JNP.11.046016.
C.L. Wang, W.S. Hwang, H.L. Chu, H.J. Lin, H.H. Ko and M.C. Wang, Ceram. Int., 42, 13136 (2016); https://doi.org/10.1016/j.ceramint.2016.05.101.
T. Bak, W. Li, J. Nowotny, A.J. Atanacio and J. Davis, J. Phys. Chem. A, 119, 9465 (2015); https://doi.org/10.1021/acs.jpca.5b05031.
T. Toyoda and I. Tsuboya, Rev. Sci. Instrum., 74, 782 (2003); https://doi.org/10.1063/1.1512984