Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Dynamics Simulations of Melting Behaviour of n-Hexacosane as Phase Change Material for Thermal Energy Storage
Corresponding Author(s) : Z.H. Rao
Asian Journal of Chemistry,
Vol. 25 No. 4 (2013): Vol 25 Issue 4
Abstract
In recent years, phase change materials, which can be used for thermal energy storage, have been widely investigated by experimental and numerical methods. To investigate the phase transition behaviour of paraffin based phase change materials, the molecular dynamics simulations was used in this study. A simple model of n-hexacosane with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that the phase transition temperature of n-hexacosane is about 330 K according to the fluctuating of self-diffusion coefficient. The bond lengths of an n-hexacosane chain from 283 K to 353 K presented a further understanding of the phase transition behaviour of n-hexacosane. The molecular dynamics simulation is an effective method for the research of phase change materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Huang, T.Y. Wang, C.H. Wang and Z.H. Rao, Mater. Res. Innov., 15, 422 (2011).
- Z.H. Rao and S.H. Wang, Renew. Sustain. Energy Rev., 15, 4554 (2011).
- B. He and F. Setterwall, Energy Convers. Manage., 43, 1709 (2002).
- L. Verlet, Phys. Rev., 159, 98 (1967).
- H.C. Andersen, J. Chem. Phys., 72, 2384 (1980).
- H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola and J.R. Haak, J. Chem. Phys., 81, 3684 (1984).
- N. Karasawa and W.A. Goddard, Macromolecules, 25, 7268 (1992).
- P.P. Eward, Ann. Phys., 369, 253 (1921).
- Accelrys Software Inc., Materials Studio Release Notes, Release 5.5, San Diego: Accelrys Software Inc., (2010).
- C.G. Tao, H.J. Feng, J. Zhou, L.H. Lu and X.H. Lu, Acta Phys. Chim. Sin., 25, 1373 (2009).
- K.L. Yin, D.J. Xu, Q. Xia, Y.J. Ye, G.Y. Wu and C.L. Chen, Acta Phys. Chim. Sin., 20, 302 (2004).
References
J. Huang, T.Y. Wang, C.H. Wang and Z.H. Rao, Mater. Res. Innov., 15, 422 (2011).
Z.H. Rao and S.H. Wang, Renew. Sustain. Energy Rev., 15, 4554 (2011).
B. He and F. Setterwall, Energy Convers. Manage., 43, 1709 (2002).
L. Verlet, Phys. Rev., 159, 98 (1967).
H.C. Andersen, J. Chem. Phys., 72, 2384 (1980).
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola and J.R. Haak, J. Chem. Phys., 81, 3684 (1984).
N. Karasawa and W.A. Goddard, Macromolecules, 25, 7268 (1992).
P.P. Eward, Ann. Phys., 369, 253 (1921).
Accelrys Software Inc., Materials Studio Release Notes, Release 5.5, San Diego: Accelrys Software Inc., (2010).
C.G. Tao, H.J. Feng, J. Zhou, L.H. Lu and X.H. Lu, Acta Phys. Chim. Sin., 25, 1373 (2009).
K.L. Yin, D.J. Xu, Q. Xia, Y.J. Ye, G.Y. Wu and C.L. Chen, Acta Phys. Chim. Sin., 20, 302 (2004).