Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sol-Gel Synthesis and Spectral Characterizations of (35-x)B2O3-65Bi2O3-x Fe2O3 Glass System
Corresponding Author(s) : Rajesh Kumar Sharma
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Sol-gel technique was used to prepare glasses of the (35-x)B2O3-65Bi2O3-x Fe2O3 (0.1≤ x ≤ 0.4) system (A1-A4: x = 0.1, 0.2, 0.3, 0.4). The local structure and symmetry around trivalent iron were determined by studying X-band powder EPR spectra at room temperature. The EPR spectra of trivalent iron in glass samples are characterized by a more intense line at g = 4.2 and a less intense line at g = 2.0. The EPR line at g = 4.2 is attributed to trivalent iron in rhombic octahedral environment. The line at g = 2.0 is because of two or more trivalent iron coupling through dipole-dipole interactions in distorted octahedral symmetry. The intensity of EPR lines is dependent of Fe2O3 content in the glass samples. At higher concentration of Fe2O3, EPR line at g = 4.2 is less intense whereas the line at g = 2.0 is more intense which is ascribed to the formation of clusters of trivalent iron. The electronic spectra of glass samples show two broad bands corresponding to d-d transition in the range 410-450 nm and in the range 530-570 nm, respectively which are assigned to trivalent iron in distorted octahedral environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Yadav and P. Singh, RSC Adv., 5, 67583 (2015); https://doi.org/10.1039/C5RA13043C.
- R.K. Brow, T.M. Alam, D.R. Tallant and R.J. Kirkpatrick, MRS Bull., 23, 63 (1998); https://doi.org/10.1557/S088376940003102X.
- D.W. Hall, M.A. Newhouse, N.F. Borelli, W.H. Dumbaugh and D.L. Weidman, Appl. Phys. Lett., 541, 1293 (1989); https://doi.org/10.1063/1.100697.
- D. Lezal, J. Pedlikova, P. Kostka, J. Bludska, M. Poulain and J. Zavadil, J. Non-Crystall. Solids, 284, 288 (2001); https://doi.org/10.1016/S0022-3093(01)00425-2.
- M. Jamnický, P. Znásik, D. Tunega and M.D. Ingram, J. Non-Cryst. Solids, 185, 151 (1995); https://doi.org/10.1016/0022-3093(94)00642-3.
- Z. Yue, L. Li, J. Zhou, H. Zhang and Z. Gui, Mater. Sci. Eng. B, 64, 68 (1999); https://doi.org/10.1016/S0921-5107(99)00152-X.
- R.P. Sreekanth Chakradhar, B. Yasoda, J.L. Rao and N.O. Gopal, Mater. Res. Bull., 41, 1646 (2006); https://doi.org/10.1016/j.materresbull.2006.02.028.
- W.M. Bergo, W.M. Pontuschka and J.M. Prison, Mater. Chem. Phys., 108, 142 (2008); https://doi.org/10.1016/j.matchemphys.2007.09.021.
- R.S. Muralidhara, C.R. Kesavulu, J.L. Rao, R.V. Anavekar and R.P.S. Chakradhar, J. Phys. Chem. Solids, 71, 1651 (2010); https://doi.org/10.1016/j.jpcs.2010.09.013.
- D. Loveridge and S. Parke, Phys. Chem. Glasses, 12, 19 (1971).
- R.S. Drago, Physical Methods for Chemists, Affiliated East-West Press Private Limited: New Delhi, edn 2, p. 559, 583 (1965).
- K.J. Rao and B.G. Rao, Proc. Indian Acad. Sci. Chem. Sci., 95, 169 (1985).
- J.A. Weil, J.R. Bolton and J.E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, John Wiley & Sons, Inc.: New York, p. 220 (1994).
- J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Clarendon: Oxford, p. 136 (1990).
- T. Castner Jr., G.S. Newell Jr., W.C. Holton and C.P. Slichter, J. Chem. Phys., 32, 668 (1960); https://doi.org/10.1063/1.1730779.
- C.R. Kurkjan and E.A. Sigety, Phys. Chem. Glasses, 9, 73 (1968).
- R.G. Schulman and W.M. Walsh Jr., Bull. Am. Phys. Soc., 8, 199 (1963).
- D.W. Moon, A.J.M. Aitken, R.K. McCrone and C.S. Cieloszyk, Phys. Chem. Glasses, 16, 91 (1975).
- D.L. Griscom, J. Non-Cryst. Solids, 40, 211 (1980); https://doi.org/10.1016/0022-3093(80)90105-2.
- I. Ardelean, P. Pascuta and L.V. Giurgiu, Int. J. Mod. Phys. B, 17, 3049 (2003); https://doi.org/10.1142/S0217979203020648.
- D.N. Sathyanarayana, Electronic Abssorption Spectroscopy and Related Technoques, Universities Press Limited, Hyderabad, India, p. 282 (2001).
- T. Bates, ed.: J.D. Mackenzie, Modern Aspects of the Vitreous State, Butterworths, London, p. 242 (1962).
- T. Abritta and F. de Souza Barros, J. Lumin., 40-41, 187 (1988); https://doi.org/10.1016/0022-2313(88)90150-0.
- G. Giridhar, D. Punyaseshudu, M.V.V.K. Srinivas Prasad, M. Venkateswarlu and G. Srinivas, Acta Phys. Pol. A, 123, 761 (2013); https://doi.org/10.12693/APhysPolA.123.761.
References
A.K. Yadav and P. Singh, RSC Adv., 5, 67583 (2015); https://doi.org/10.1039/C5RA13043C.
R.K. Brow, T.M. Alam, D.R. Tallant and R.J. Kirkpatrick, MRS Bull., 23, 63 (1998); https://doi.org/10.1557/S088376940003102X.
D.W. Hall, M.A. Newhouse, N.F. Borelli, W.H. Dumbaugh and D.L. Weidman, Appl. Phys. Lett., 541, 1293 (1989); https://doi.org/10.1063/1.100697.
D. Lezal, J. Pedlikova, P. Kostka, J. Bludska, M. Poulain and J. Zavadil, J. Non-Crystall. Solids, 284, 288 (2001); https://doi.org/10.1016/S0022-3093(01)00425-2.
M. Jamnický, P. Znásik, D. Tunega and M.D. Ingram, J. Non-Cryst. Solids, 185, 151 (1995); https://doi.org/10.1016/0022-3093(94)00642-3.
Z. Yue, L. Li, J. Zhou, H. Zhang and Z. Gui, Mater. Sci. Eng. B, 64, 68 (1999); https://doi.org/10.1016/S0921-5107(99)00152-X.
R.P. Sreekanth Chakradhar, B. Yasoda, J.L. Rao and N.O. Gopal, Mater. Res. Bull., 41, 1646 (2006); https://doi.org/10.1016/j.materresbull.2006.02.028.
W.M. Bergo, W.M. Pontuschka and J.M. Prison, Mater. Chem. Phys., 108, 142 (2008); https://doi.org/10.1016/j.matchemphys.2007.09.021.
R.S. Muralidhara, C.R. Kesavulu, J.L. Rao, R.V. Anavekar and R.P.S. Chakradhar, J. Phys. Chem. Solids, 71, 1651 (2010); https://doi.org/10.1016/j.jpcs.2010.09.013.
D. Loveridge and S. Parke, Phys. Chem. Glasses, 12, 19 (1971).
R.S. Drago, Physical Methods for Chemists, Affiliated East-West Press Private Limited: New Delhi, edn 2, p. 559, 583 (1965).
K.J. Rao and B.G. Rao, Proc. Indian Acad. Sci. Chem. Sci., 95, 169 (1985).
J.A. Weil, J.R. Bolton and J.E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, John Wiley & Sons, Inc.: New York, p. 220 (1994).
J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Clarendon: Oxford, p. 136 (1990).
T. Castner Jr., G.S. Newell Jr., W.C. Holton and C.P. Slichter, J. Chem. Phys., 32, 668 (1960); https://doi.org/10.1063/1.1730779.
C.R. Kurkjan and E.A. Sigety, Phys. Chem. Glasses, 9, 73 (1968).
R.G. Schulman and W.M. Walsh Jr., Bull. Am. Phys. Soc., 8, 199 (1963).
D.W. Moon, A.J.M. Aitken, R.K. McCrone and C.S. Cieloszyk, Phys. Chem. Glasses, 16, 91 (1975).
D.L. Griscom, J. Non-Cryst. Solids, 40, 211 (1980); https://doi.org/10.1016/0022-3093(80)90105-2.
I. Ardelean, P. Pascuta and L.V. Giurgiu, Int. J. Mod. Phys. B, 17, 3049 (2003); https://doi.org/10.1142/S0217979203020648.
D.N. Sathyanarayana, Electronic Abssorption Spectroscopy and Related Technoques, Universities Press Limited, Hyderabad, India, p. 282 (2001).
T. Bates, ed.: J.D. Mackenzie, Modern Aspects of the Vitreous State, Butterworths, London, p. 242 (1962).
T. Abritta and F. de Souza Barros, J. Lumin., 40-41, 187 (1988); https://doi.org/10.1016/0022-2313(88)90150-0.
G. Giridhar, D. Punyaseshudu, M.V.V.K. Srinivas Prasad, M. Venkateswarlu and G. Srinivas, Acta Phys. Pol. A, 123, 761 (2013); https://doi.org/10.12693/APhysPolA.123.761.