Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of the Optimal Conditions and Mechanism of CdS Thin Layers Formation by Chemical Bath Deposition Method
Corresponding Author(s) : Aliakbar Miranbeigi
Asian Journal of Chemistry,
Vol. 25 No. 3 (2013): Vol 25 Issue 3
Abstract
In recent years, it has been considerable interest in thin film semiconductors for use in solar cells or photovoltaic devices and thin film transistors for flat panel displays. Cadmium sulfide has been one of the promising materials. Cadmium sulfide is a II-VI group compound semiconductor with a direct band gap of 2.42 eV at room temperature. Cadmium sulfide exists in two crystalline forms i.e., hexagonal phase and cubic phase. It is possible to grow CdS films in both phases. Among several methods of CdS thin film deposition, chemical bath deposition is a suitable one. In chemical bath deposition, the structure of the film is influenced by the composition of the bath, temperature and pH of the solution. Determination of optimum conditions in chemical bath deposition-CdS thin film formation on a substrate, as for pH, temperature, reagent concentrations, etc. can be guided by a detailed knowledge of bath reactions mechanism. Decrease in the band gap CdS with increasing thickness and optical and electrical properties can be due to the influence of these parameters. In this work the hydrolysis mechanism of sulfide ion producing agents [thiourea and thioacetamide] and cadmium ion complexation and CdS saturation condition in the bath solution is observed and discussed mainly by UV-VIS spectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Zhai, S. Wang, H. Xu, H. Wang and H. Yan, Mater. Lett., 59, 1497 (2005).
- G. Sasikala, P. Thilakan and C. Subramanian, Solar Energy Mater. Solar Cells, 62, 275 (2000).
- C. Voss, Y.-J. Chang, S. Subramanian, S. O. Ryu, T.-J. Lee and C.-H. Chang, J. Electrochem. Soc., 151, C655 (2004).
- I. Kaur, D.K. Pandya and K.L. Chopra, J. Electrochem. Soc., 127, 943 (1980).
- M.A. Martinez, C. Guillén and J. Herrero, Appl. Surf. Sci., 136, 8 (1998).
- I.O. Oladeji and L. Chow, J. Electrochem. Soc., 144, 2342 (1997).
- E. Pentiaz, V. Draghici, G. Sarau, B. Mereu, L. Pintilie, F. Sava and M. Popescu, J. Electrochem. Soc., 151, G729 (2004).
- J.M. Dona and J. Herrero, J. Electrochem. Soc., 144, 4081 (1997).
- J. Herrero, M.T. Gutiérrez, C. Guillén, J.M. Doña, M.A. Martinez,A.M. Chaparro and R. Bayón, Thin Solid Films, 361-362, 28 (2000).
- P. Nemec, I. Nemec, P. Nahálková, Y. Nemcová, F. Trojánek and P. Malý, Thin Solid Films, 403, 9 (2002).
- D.S. Boyle, A. Bayer, M.R. Heinrich, O. Robbe and P. O'Brien, Thin Solid Films, 361-362, 150 (2000).
- P.O. Brien and J. McAleese, Mater. Chem., 8, 2309 (1998).
- H. Zhang, X. Ma, J. Xu and D. Yang, J. Crystal Growth, 263, 372 (2004).
- M. Ortego-Lopez,A. Avila-Garcia, M.L. Albor-Aguilera and V.M. SanchezResendiz, Mater. Res. Bull., 38, 1241 (2003).
- S. Herrera, C.M. Ramos, R. Patiño, J.L. Peña, W. Cauich and A.I. Oliva, Brazil. J. Phys., 36, 1054 (2006).
- O.M. Peeters and C.J. de Ranter, J. Chem. Soc. Perkins Trans II, 2, 1832 (1974).
- D. Rosenthal and T.I. Taylor, J. Am. Chem. Soc., 79, 2684 (1957).
- E.A. Butler, D.G. Peters and E.H. Swift, Anal. Chem., 30, 1379 (1958).
- O. Portillo-Moreno, H. Lima-Lima, R. Lozada-Morales, R. PalominoMerino and O. Zelaya-Angel, J. Mater. Sci., 40, 4489 (2005).
- E.H. Swift and E.A. Butler, Anal. Chem., 28, 146 (1956).
References
R. Zhai, S. Wang, H. Xu, H. Wang and H. Yan, Mater. Lett., 59, 1497 (2005).
G. Sasikala, P. Thilakan and C. Subramanian, Solar Energy Mater. Solar Cells, 62, 275 (2000).
C. Voss, Y.-J. Chang, S. Subramanian, S. O. Ryu, T.-J. Lee and C.-H. Chang, J. Electrochem. Soc., 151, C655 (2004).
I. Kaur, D.K. Pandya and K.L. Chopra, J. Electrochem. Soc., 127, 943 (1980).
M.A. Martinez, C. Guillén and J. Herrero, Appl. Surf. Sci., 136, 8 (1998).
I.O. Oladeji and L. Chow, J. Electrochem. Soc., 144, 2342 (1997).
E. Pentiaz, V. Draghici, G. Sarau, B. Mereu, L. Pintilie, F. Sava and M. Popescu, J. Electrochem. Soc., 151, G729 (2004).
J.M. Dona and J. Herrero, J. Electrochem. Soc., 144, 4081 (1997).
J. Herrero, M.T. Gutiérrez, C. Guillén, J.M. Doña, M.A. Martinez,A.M. Chaparro and R. Bayón, Thin Solid Films, 361-362, 28 (2000).
P. Nemec, I. Nemec, P. Nahálková, Y. Nemcová, F. Trojánek and P. Malý, Thin Solid Films, 403, 9 (2002).
D.S. Boyle, A. Bayer, M.R. Heinrich, O. Robbe and P. O'Brien, Thin Solid Films, 361-362, 150 (2000).
P.O. Brien and J. McAleese, Mater. Chem., 8, 2309 (1998).
H. Zhang, X. Ma, J. Xu and D. Yang, J. Crystal Growth, 263, 372 (2004).
M. Ortego-Lopez,A. Avila-Garcia, M.L. Albor-Aguilera and V.M. SanchezResendiz, Mater. Res. Bull., 38, 1241 (2003).
S. Herrera, C.M. Ramos, R. Patiño, J.L. Peña, W. Cauich and A.I. Oliva, Brazil. J. Phys., 36, 1054 (2006).
O.M. Peeters and C.J. de Ranter, J. Chem. Soc. Perkins Trans II, 2, 1832 (1974).
D. Rosenthal and T.I. Taylor, J. Am. Chem. Soc., 79, 2684 (1957).
E.A. Butler, D.G. Peters and E.H. Swift, Anal. Chem., 30, 1379 (1958).
O. Portillo-Moreno, H. Lima-Lima, R. Lozada-Morales, R. PalominoMerino and O. Zelaya-Angel, J. Mater. Sci., 40, 4489 (2005).
E.H. Swift and E.A. Butler, Anal. Chem., 28, 146 (1956).