Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Reaction Time on Highly Ordered TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells
Corresponding Author(s) : Yuan Lin
Asian Journal of Chemistry,
Vol. 25 No. 2 (2013): Vol 25 Issue 2
Abstract
Highly ordered TiO2 nanotube arrays (TNAs) were fabricated by anodizing titanium foils in F-containing electrolyte for different time. The crystalline and morphology of the prepared TiO2 nanotube arrays were studied by X-ray diffraction patterns and scanning electron microscope. The influences of reaction time on the prepared TiO2 nanotube arrays were carefully examined. The results showed that the surface area of TiO2 nanotube arrays increased with reaction time, meanwhile resistance on photoanode/electrolyte interface decreased with reaction time. Too long reaction time will not increase the surface area of TiO2 nanotube arrays. When the prepared TiO2 nanotube arrays were used on dye-sensitized solar cells (DSSCs), a light to electricity conversion efficiency (h) of 5.95 % was obtained when illuminated on back side which is a high efficiency considering without further treatment of TiO2 nanotube arrays.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. O'Regan and M. Grätzel, Nature, 353, 737 (1991).
- D.W. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z.E. Chen and C. Dickey, J. Mater. Res., 16, 3331 (2001).
- Q. Zheng, B.X. Zhou, J. Bai, W.M. Cai and J.S. Liao, Prog. Chem., 19, 117 (2007).
- O.K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes and E.C. Dickey, J. Mater. Res., 18, 156 (2003).
- H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna and P. Schmuki, Electrochem. Commun., 7, 576 (2005).
- J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova and P. Schmuki, Angew. Chem. Int. Ed., 44, 7463 (2005).
- M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes, J. Phys. Chem. C, 111, 14992 (2007).
- J.M. Macak, H. Tsuchiya, A. Ghicov and P. Schmuki, Electrochem. Commun., 7, 1133 (2005).
- G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, Nano Lett., 6, 215 (2006).
- M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin and C.A. Grimes, Nanotechnology, 17, 1446 (2006).
- T. Stergiopoulos, A. Ghicov, V. Likodimos, D. S. Tsoukleris, J. Kunze, P. Schmuki and P. Falaras, Nanotechnology, 19, 235602 (2008).
- R. Tenne and C.N.R. Rao, Philos. Trans. R. Soc. A, 362, 2099 (2004).
- K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese and C.A. Grimes, Nanotechnology, 18, 065707 (2007).
- J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, R.Sh. Guo and W.M. Liu, Thin Solid Films, 517, 4390 (2009).
- J.L. Tao, J.L. Zhao, X.X. Wang, Y.R Kang and Y.X. Li, Electrochem. Commun., 10, 1161 (2008).
- W. Chanmanee, A. Watcharenwong, C.R. Chenthamarakshan, P.N. Kajitvichyanukul, R. de Tacconi and K. Rajeshwar, J. Am. Chem. Soc., 130, 965 (2008).
- Q.A. Nguyen, Y.V. Bhargava and T.M. Devine, Electrochem. Commun., 10, 471 (2008).
- J.H. Park, T.W. Leeb and M.G. Kang, Chem. Commun., 25, 2867 (2008).
- K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O.K. Varghese, G.K. Mor, T.J. LaTempa, M. Thelakkat and C.A. Grimes, Nano Lett., 8, 1654 (2008).
- M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes, J. Phys. Chem. C, 111, 14992 (2007).
- Y. Yang, X.H. Wang and L.T. Li, J. Am. Ceram Soc., 91, 3086 (2008).
- J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki and A.B. Walker, J. Am. Chem. Soc., 130, 13364 (2008).
- D.J. Yang, H. Park, S.J. Cho, H.G. Kim and W.Y. Choi, J. Phys. Chem. Solids, 69, 1272 (2008)
References
B. O'Regan and M. Grätzel, Nature, 353, 737 (1991).
D.W. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z.E. Chen and C. Dickey, J. Mater. Res., 16, 3331 (2001).
Q. Zheng, B.X. Zhou, J. Bai, W.M. Cai and J.S. Liao, Prog. Chem., 19, 117 (2007).
O.K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes and E.C. Dickey, J. Mater. Res., 18, 156 (2003).
H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna and P. Schmuki, Electrochem. Commun., 7, 576 (2005).
J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova and P. Schmuki, Angew. Chem. Int. Ed., 44, 7463 (2005).
M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes, J. Phys. Chem. C, 111, 14992 (2007).
J.M. Macak, H. Tsuchiya, A. Ghicov and P. Schmuki, Electrochem. Commun., 7, 1133 (2005).
G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, Nano Lett., 6, 215 (2006).
M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin and C.A. Grimes, Nanotechnology, 17, 1446 (2006).
T. Stergiopoulos, A. Ghicov, V. Likodimos, D. S. Tsoukleris, J. Kunze, P. Schmuki and P. Falaras, Nanotechnology, 19, 235602 (2008).
R. Tenne and C.N.R. Rao, Philos. Trans. R. Soc. A, 362, 2099 (2004).
K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese and C.A. Grimes, Nanotechnology, 18, 065707 (2007).
J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, R.Sh. Guo and W.M. Liu, Thin Solid Films, 517, 4390 (2009).
J.L. Tao, J.L. Zhao, X.X. Wang, Y.R Kang and Y.X. Li, Electrochem. Commun., 10, 1161 (2008).
W. Chanmanee, A. Watcharenwong, C.R. Chenthamarakshan, P.N. Kajitvichyanukul, R. de Tacconi and K. Rajeshwar, J. Am. Chem. Soc., 130, 965 (2008).
Q.A. Nguyen, Y.V. Bhargava and T.M. Devine, Electrochem. Commun., 10, 471 (2008).
J.H. Park, T.W. Leeb and M.G. Kang, Chem. Commun., 25, 2867 (2008).
K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O.K. Varghese, G.K. Mor, T.J. LaTempa, M. Thelakkat and C.A. Grimes, Nano Lett., 8, 1654 (2008).
M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes, J. Phys. Chem. C, 111, 14992 (2007).
Y. Yang, X.H. Wang and L.T. Li, J. Am. Ceram Soc., 91, 3086 (2008).
J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki and A.B. Walker, J. Am. Chem. Soc., 130, 13364 (2008).
D.J. Yang, H. Park, S.J. Cho, H.G. Kim and W.Y. Choi, J. Phys. Chem. Solids, 69, 1272 (2008)