Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation, Microstructure and Photocatalytic Performance of the Anatase Nano-TiO2 Thin Film
Corresponding Author(s) : Man-De Qiu
Asian Journal of Chemistry,
Vol. 25 No. 2 (2013): Vol 25 Issue 2
Abstract
The anatase nano-TiO2 thin films with different layers were prepared on the ordinary glass slides using sol-gel method. The photocatalytic activity of the thin films and the microstructure were investigated. The results showed that the optimum annealing temperature for anatase nano-TiO2 was 500 ºC and TiO2 particles were spherical in shape and dispersed uniformly on the surface of the thin films. The films have good adhesion with the glass substrate. Moreover, the nano-TiO2 particles on the surface have the trend to grow large with the increase of film layers. The prepared thin films have good light transmission rate and the absorption threshold has an obvious red shift with the increase of film layers. Furthermore, the thin films have high photocatalytic activity and the photocatalytic decolourization rate of acidic black 10B can reach 80 % in 120 min over 6-layer thin film.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.B. Chen and S.S. Mao, J. Chem. Rev., 107, 2891 (2007).
- S. Janitabar-Darzi, A.R. Mahjoub and A. Nilchi, Physica E, 42, 176 (2009).
- A. López, D. Acosta, A.I. Martínez and J. Santiago Powder Technol., 202, 1-3, 111-117 (2010).
- L. Sun, T.C. An and S.G. Wan, Sep. Purif. Technol., 68, 83 (2009).
- L. Lopez, W.A. Daoud and D. Dutta, Surf. Coat. Technol., 25, 251 (2010).
- X.-S. Zhou, L.-J. Li and Y.-H. Lin, J. Electroceramics, 21, 795 (2008).
- C.X. Zhang, Rufen Chen. Rare Met., 28, 378 (2009).
- V.I. Shapovalov, O.A. Shilova, I.V. Smirnova, A.V. Zavyalov and A.E. Lapshin, Glass Phys. Chem., 37, 150 (2011).
- Wei Gang, Zhang Yuanjing, et al., Sci. China Series B: Chem., 46, 184 (2003).
- W.-G. Kim and S.-W. Rhee, Microelect. Engg., 86, 2153 (2003).
- Y.G. Sheng, L.P. Liang, Y. Xu, D. Wu and Y.H. Sun, Optical Mater., 30, 1310 (2008).
- L. Ge, M.X. Xu, H.B. Fang and M. Sun, Appl. Surf. Sci., 253, 720 (2006).
- Yang Jia-long, Wang Fu, et al., Wuhan Univ. J. Nat. Sci., 10, 581 (2005).
- W.X. Xianyu, M.K. Park and W.I. Lee, Korean J. Chem. Engg., 18, 903 (2001).
- B.B. Yu, J.B. Zeng, L.F. Gong, M.S. Zhang, L.M. Zhang and X. Chen, Talanta, 72, 1667 (2007).
References
X.B. Chen and S.S. Mao, J. Chem. Rev., 107, 2891 (2007).
S. Janitabar-Darzi, A.R. Mahjoub and A. Nilchi, Physica E, 42, 176 (2009).
A. López, D. Acosta, A.I. Martínez and J. Santiago Powder Technol., 202, 1-3, 111-117 (2010).
L. Sun, T.C. An and S.G. Wan, Sep. Purif. Technol., 68, 83 (2009).
L. Lopez, W.A. Daoud and D. Dutta, Surf. Coat. Technol., 25, 251 (2010).
X.-S. Zhou, L.-J. Li and Y.-H. Lin, J. Electroceramics, 21, 795 (2008).
C.X. Zhang, Rufen Chen. Rare Met., 28, 378 (2009).
V.I. Shapovalov, O.A. Shilova, I.V. Smirnova, A.V. Zavyalov and A.E. Lapshin, Glass Phys. Chem., 37, 150 (2011).
Wei Gang, Zhang Yuanjing, et al., Sci. China Series B: Chem., 46, 184 (2003).
W.-G. Kim and S.-W. Rhee, Microelect. Engg., 86, 2153 (2003).
Y.G. Sheng, L.P. Liang, Y. Xu, D. Wu and Y.H. Sun, Optical Mater., 30, 1310 (2008).
L. Ge, M.X. Xu, H.B. Fang and M. Sun, Appl. Surf. Sci., 253, 720 (2006).
Yang Jia-long, Wang Fu, et al., Wuhan Univ. J. Nat. Sci., 10, 581 (2005).
W.X. Xianyu, M.K. Park and W.I. Lee, Korean J. Chem. Engg., 18, 903 (2001).
B.B. Yu, J.B. Zeng, L.F. Gong, M.S. Zhang, L.M. Zhang and X. Chen, Talanta, 72, 1667 (2007).