Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantitative Structure-Electrochemistry Relationship Study for Prediction of Half-Wave Reduction Potentials of Some Chlorinated Organic Compounds by Genetic Algorithm-Multiple Linear Regression
Corresponding Author(s) : Majid Mohammadhossein
Asian Journal of Chemistry,
Vol. 25 No. 1 (2013): Vol 25 Issue 1
Abstract
Quantitative structure-electrochemistry relationship model has been used to predict and explain half-wave reduction potentials (E1/2). This method allows for the prediction of E1/2s in a variety of organic compounds based on their structures alone. Genetic algorithm-multiple linear regression (GA-MLR) was performed to build the model. The proposed methodology was validated using leave-one-out and leave-group-out cross validation using division of the available data set into training and test sets. The results illustrated that the linear techniques such as multiple linear regression combined with a successful variable selection procedure like GA are capable to generate an efficient quantitative structure-electrochemistry relationship model for predicting the E1/2s of different compounds. A model with low prediction error and good correlation coefficient was obtained (R2calibration = 0.923, R2prediction = 0.940, Q2LOO = 0.810, Q2LGO = 0.803, R2adj = 0.889, RMSEP = 0.203). This model was used for the prediction of the E1/2 values of some organic compounds, which were not used in the modeling procedure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.G. Krivenko, A.S. Kotkin and V.A. Kurmaz, Russ. J. Electrochem., 41, 122 (2005).
- M. Shamsipur, A. Siroueinejad, B. Hemmateenejad, A. Abbaspour, H. Sharghi, K. Alizadeh and S. Arshadi, J. Electroanal. Chem., 600, 345 (2007).
- R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH: Weinheim (2000).
- F.A.L. Ribeiro and M.M.C. Ferreira, J. Mol. Struct.: Theochem., 663, 109 (2003).
- A. Jain and S.H. Yalkowsky, Ind. Eng. Chem. Res., 46, 2589 (2007).
- A.R. Katritzky, L. Mu and M. Karelson, J. Chem. Inf. Comput. Sci., 36, 1162 (1996).
- J. Wang, G. Krudy, T. Hou, W. Zhang, G. Holland and X. Xu, J. Chem. Inf. Model., 47, 1395 (2007).
- F. Ignatz-Hoover, R. Petrukhin, M. Karelson and A.R. Katritzky, J. Chem. Inf. Comput. Sci., 41, 295 (2001).
- A.R. Katritzky, U. Maran, V.S. Lobanov and M. Karelson, J. Chem. Inf. Comput. Sci., 1, 1 (2000).
- E.H.P. Wolff and A.N.R. Bos, Ind. Eng. Chem. Res., 36, 1163 (1997).
- R.L. McNaughton, A.A. Tipton, N.D. Rubie, R.R. Conry and M.L. Kirk, Inorg. Chem., 39, 5697 (2000).
- S. Niu, X.B. Wang, J.A. Nichols, L.S. Wang and T. Ichiye, J. Phys. Chem. A, 107, 2898 (2003).
- A. Beheshti, S. Riahi and M.R. Ganjali,Electrochim. Acta, 54, 5368 (2009).
- M.H. Fatemi, M.R. Hadjmohammadi, K. Kamel and P. Biparva, Bull. Chem. Soc. (Japan), 80, 303 (2007).
- B. Hemmateenejad and M. Yazdani, Anal. Chim. Acta, 634, 27 (2009).
- K. Nesmerak, I. Nemece, M. Sticha, K. Waisser and K. Palat,Electrochim. Acta, 50, 1431 (2005).
- B. Hemmateenejad and M. Shamsipur, Intern. Electr. J. Mol. Design, 3, 316 (2004).
- O. Krang and J. Voss, Z. Naturforsch., 58b, 1187 (2003).
References
A.G. Krivenko, A.S. Kotkin and V.A. Kurmaz, Russ. J. Electrochem., 41, 122 (2005).
M. Shamsipur, A. Siroueinejad, B. Hemmateenejad, A. Abbaspour, H. Sharghi, K. Alizadeh and S. Arshadi, J. Electroanal. Chem., 600, 345 (2007).
R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH: Weinheim (2000).
F.A.L. Ribeiro and M.M.C. Ferreira, J. Mol. Struct.: Theochem., 663, 109 (2003).
A. Jain and S.H. Yalkowsky, Ind. Eng. Chem. Res., 46, 2589 (2007).
A.R. Katritzky, L. Mu and M. Karelson, J. Chem. Inf. Comput. Sci., 36, 1162 (1996).
J. Wang, G. Krudy, T. Hou, W. Zhang, G. Holland and X. Xu, J. Chem. Inf. Model., 47, 1395 (2007).
F. Ignatz-Hoover, R. Petrukhin, M. Karelson and A.R. Katritzky, J. Chem. Inf. Comput. Sci., 41, 295 (2001).
A.R. Katritzky, U. Maran, V.S. Lobanov and M. Karelson, J. Chem. Inf. Comput. Sci., 1, 1 (2000).
E.H.P. Wolff and A.N.R. Bos, Ind. Eng. Chem. Res., 36, 1163 (1997).
R.L. McNaughton, A.A. Tipton, N.D. Rubie, R.R. Conry and M.L. Kirk, Inorg. Chem., 39, 5697 (2000).
S. Niu, X.B. Wang, J.A. Nichols, L.S. Wang and T. Ichiye, J. Phys. Chem. A, 107, 2898 (2003).
A. Beheshti, S. Riahi and M.R. Ganjali,Electrochim. Acta, 54, 5368 (2009).
M.H. Fatemi, M.R. Hadjmohammadi, K. Kamel and P. Biparva, Bull. Chem. Soc. (Japan), 80, 303 (2007).
B. Hemmateenejad and M. Yazdani, Anal. Chim. Acta, 634, 27 (2009).
K. Nesmerak, I. Nemece, M. Sticha, K. Waisser and K. Palat,Electrochim. Acta, 50, 1431 (2005).
B. Hemmateenejad and M. Shamsipur, Intern. Electr. J. Mol. Design, 3, 316 (2004).
O. Krang and J. Voss, Z. Naturforsch., 58b, 1187 (2003).