Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Studies on Interaction Between CO2 Gas and Imidazolium-Type Organic Ionic Liquid Using DFT and Natural Bond Orbital Calculations
Corresponding Author(s) : Saied M. Soliman
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
The interaction between 4,5-dibromo-1-butyl-3-methylimidazolium trifluoromethanesulfonate; [DBBIM][TFMSO3] ionic liquid and CO2 gas has been studied using DFT calculations. With the help of natural bond orbital (NBO) analyses, the second order perturbation energies of the most interacting natural bond orbitals and natural atomic charges have been predicted by the density functional theory (DFT) computations at the X3LYP/6-31++G(d,p) level of theory. The natural charge calculations showed that in the ionic liquid-CO2 system, the [DBBIM][TFMSO3] ionic liquid is the electron donor while CO2 gas is an electron acceptor. Further stabilization of the imidazolium ring p-system is produced due to the interaction of the CO2 gas with the ionic liquid. The polarization of the C–O and S1–O3 bonds are affected significantly by such interactions. The charge decomposition (CDA) analysis revealed the strong interactions between the [DBBIM]+ and [TFMSO3]– ions of the ionic liquid and the weak interaction between the ionic liquid and the CO2 gas. The mp2 interaction energy of ionic liquid-CO2 system is only 3.6107 kcal/mol.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M. D'Alessandro, B. Smit and J.R. Long, Angew. Chem. Int. Ed., 49, 6058 (2010); doi:10.1002/anie.201000431.
- E.D. Bates, R.D. Mayton, I. Ntai and J.H. Davis, J. Am. Chem. Soc., 124, 926 (2002); doi:10.1021/ja017593d.
- C.Y. Hong, C.Y. Fei, D.D. Shun, A. Ning and Z. Yong, J. Mol. Liq., 199, 7 (2014); doi:10.1016/j.molliq.2014.06.023.
- F. Jensen, Introduction to Computational Chemistry, Wiley & Sons, Chichester, Chp. 9 (1999).
- R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); doi:10.1063/1.1740588.
- U.C. Singh and P.A. Kollman, J. Comput. Chem., 5, 129 (1984); doi:10.1002/jcc.540050204.
- A.J. Stone and M. Alderton, Mol. Phys., 56, 1047 (1985); doi:10.1080/00268978500102891.
- L.E. Chirlian and M.M. Francl, J. Comput. Chem., 8, 894 (1987); doi:10.1002/jcc.540080616.
- C.M. Breneman and K.B. Wiberg, J. Comput. Chem., 11, 361 (1990); doi:10.1002/jcc.540110311.
- D.E. Williams, Rev. Comput. Chem., 2, 219 (1991); doi:10.1002/9780470125793.ch6.
- C.A. Reynolds, J.W. Essex and W.G. Richards, J. Am. Chem. Soc., 114, 9075 (1992); doi:10.1021/ja00049a045.
- C. Aleman, M. Orozro and F.J. Luque, Chem. Phys., 189, 573 (1994); doi:10.1016/0301-0104(94)00310-6.
- U. Koch and E. Egert, J. Comput. Chem., 16, 937 (1995); doi:10.1002/jcc.540160803.
- D.S. Marynick, J. Comput. Chem., 18, 955 (1997); doi:10.1002/(SICI)1096-987X(199705)18:7<955::AID-JCC7>3.0.CO;2-Q.
- M. Swart, P.T. van Duijnen and J.G. Snijders, J. Comput. Chem., 22, 79 (2001); doi:10.1002/1096-987X(20010115)22:1<79::AID-JCC8>3.0.CO;2-B.
- R.F.W. Bader, Atoms in Molecules - A Quantum Theory, Oxford, London (1990).
- J. Cioslowski, J. Am. Chem. Soc., 111, 8333 (1989); doi:10.1021/ja00204a001.
- M. Frisch, I.N. Ragazos, M.A. Robb and H. Bernhard Schlegel, Chem. Phys. Lett., 189, 524 (1992); doi:10.1016/0009-2614(92)85244-5.
- J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); doi:10.1021/ja00544a007.
- A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); doi:10.1063/1.445134.
- A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); doi:10.1063/1.449486.
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); doi:10.1021/cr00088a005.
- F. Weinhold and J.E. Carpenter, The Structure of Small Molecules and Ions, Plenum, New York, p. 227 (1988).
- X. Xu and W.A. Goddard, Proc. Natl. Acad. Sci. USA, 101, 2673 (2004); doi:10.1073/pnas.0308730100.
- J. Pernak, R. Kordala, B. Markiewicz, F. Walkiewicz, M. Poplawski, A. Fabianska, S. Jankowski and M. Lozynski, RSC Adv., 2, 8429 (2012); doi:10.1039/c2ra21502k.
- S. Chen, R. Vijayaraghavan, D.R. MacFarlane and E.I. Izgorodina, J. Phys. Chem. B, 117, 3186 (2013); doi:10.1021/jp310267x.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision A 02, Gaussian, Inc, Wallingford, CT (2009).
- P. Gu, R. Lü, S. Wang, Y. Lu and D. Liu, Comput. Theoret. Chem., 1020, 22 (2013); doi:10.1016/j.comptc.2013.06.038.
- S.S. Batsanov, Experimental Foundations of Structural Chemistry, Moscow University Press, Moscow (2008).
- S. Sebastian and N. Sundaraganesan, Spectrochim. Acta A, 75, 941 (2010); doi:10.1016/j.saa.2009.11.030.
- I.H. Joe, I. Kostova, C. Ravikumar, M. Amalanathan and S.C. Pînzaru, J. Raman Spectrosc., 40, 1033 (2009); doi:10.1002/jrs.2226.
- S. Dapprich and G. Frenking, J. Phys. Chem., 99, 9352 (1995); doi:10.1021/j100023a009.
References
D.M. D'Alessandro, B. Smit and J.R. Long, Angew. Chem. Int. Ed., 49, 6058 (2010); doi:10.1002/anie.201000431.
E.D. Bates, R.D. Mayton, I. Ntai and J.H. Davis, J. Am. Chem. Soc., 124, 926 (2002); doi:10.1021/ja017593d.
C.Y. Hong, C.Y. Fei, D.D. Shun, A. Ning and Z. Yong, J. Mol. Liq., 199, 7 (2014); doi:10.1016/j.molliq.2014.06.023.
F. Jensen, Introduction to Computational Chemistry, Wiley & Sons, Chichester, Chp. 9 (1999).
R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); doi:10.1063/1.1740588.
U.C. Singh and P.A. Kollman, J. Comput. Chem., 5, 129 (1984); doi:10.1002/jcc.540050204.
A.J. Stone and M. Alderton, Mol. Phys., 56, 1047 (1985); doi:10.1080/00268978500102891.
L.E. Chirlian and M.M. Francl, J. Comput. Chem., 8, 894 (1987); doi:10.1002/jcc.540080616.
C.M. Breneman and K.B. Wiberg, J. Comput. Chem., 11, 361 (1990); doi:10.1002/jcc.540110311.
D.E. Williams, Rev. Comput. Chem., 2, 219 (1991); doi:10.1002/9780470125793.ch6.
C.A. Reynolds, J.W. Essex and W.G. Richards, J. Am. Chem. Soc., 114, 9075 (1992); doi:10.1021/ja00049a045.
C. Aleman, M. Orozro and F.J. Luque, Chem. Phys., 189, 573 (1994); doi:10.1016/0301-0104(94)00310-6.
U. Koch and E. Egert, J. Comput. Chem., 16, 937 (1995); doi:10.1002/jcc.540160803.
D.S. Marynick, J. Comput. Chem., 18, 955 (1997); doi:10.1002/(SICI)1096-987X(199705)18:7<955::AID-JCC7>3.0.CO;2-Q.
M. Swart, P.T. van Duijnen and J.G. Snijders, J. Comput. Chem., 22, 79 (2001); doi:10.1002/1096-987X(20010115)22:1<79::AID-JCC8>3.0.CO;2-B.
R.F.W. Bader, Atoms in Molecules - A Quantum Theory, Oxford, London (1990).
J. Cioslowski, J. Am. Chem. Soc., 111, 8333 (1989); doi:10.1021/ja00204a001.
M. Frisch, I.N. Ragazos, M.A. Robb and H. Bernhard Schlegel, Chem. Phys. Lett., 189, 524 (1992); doi:10.1016/0009-2614(92)85244-5.
J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); doi:10.1021/ja00544a007.
A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); doi:10.1063/1.445134.
A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); doi:10.1063/1.449486.
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); doi:10.1021/cr00088a005.
F. Weinhold and J.E. Carpenter, The Structure of Small Molecules and Ions, Plenum, New York, p. 227 (1988).
X. Xu and W.A. Goddard, Proc. Natl. Acad. Sci. USA, 101, 2673 (2004); doi:10.1073/pnas.0308730100.
J. Pernak, R. Kordala, B. Markiewicz, F. Walkiewicz, M. Poplawski, A. Fabianska, S. Jankowski and M. Lozynski, RSC Adv., 2, 8429 (2012); doi:10.1039/c2ra21502k.
S. Chen, R. Vijayaraghavan, D.R. MacFarlane and E.I. Izgorodina, J. Phys. Chem. B, 117, 3186 (2013); doi:10.1021/jp310267x.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision A 02, Gaussian, Inc, Wallingford, CT (2009).
P. Gu, R. Lü, S. Wang, Y. Lu and D. Liu, Comput. Theoret. Chem., 1020, 22 (2013); doi:10.1016/j.comptc.2013.06.038.
S.S. Batsanov, Experimental Foundations of Structural Chemistry, Moscow University Press, Moscow (2008).
S. Sebastian and N. Sundaraganesan, Spectrochim. Acta A, 75, 941 (2010); doi:10.1016/j.saa.2009.11.030.
I.H. Joe, I. Kostova, C. Ravikumar, M. Amalanathan and S.C. Pînzaru, J. Raman Spectrosc., 40, 1033 (2009); doi:10.1002/jrs.2226.
S. Dapprich and G. Frenking, J. Phys. Chem., 99, 9352 (1995); doi:10.1021/j100023a009.