Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Greener Process for Gallic Acid Production from Tannic Acid Hydrolysis with Hydrochloric Acid
Corresponding Author(s) : Xiuyang Lu
Asian Journal of Chemistry,
Vol. 27 No. 9 (2015): Vol 27 Issue 9
Abstract
The traditional technology for gallic acid production from tannic acid with sodium hydroxide causes severe pollution to the environment. Focusing on this issue, a greener process for gallic acid production from tannic acid hydrolysis with hydrochloric acid was developed. The catalytic activities of HCl, H2SO4 and NaOH for tannic acid hydrolysis were evaluated. The HCl-catalyzed hydrolysis of tannic acid could achieve similar yield of gallic acid as traditional NaOH-catalyzed hydrolysis, although the hydrolysis rate of tannic acid with HCl was not as fast as that with NaOH. Afterwards, the effects of tannic acid initial concentration, reaction temperature, HCl concentration on tannic acid hydrolysis were investigated. The HCl-catalyzed hydrolysis rate of tannic acid increased as temperature rose and the increase of HCl concentration could significantly facilitate the hydrolysis rate of tannic acid. The hydrolysis rate constants at different temperatures and acid concentrations were obtained by first-order equation and the activation energies were obtained by Arrhenius equation. The rate constants of tannic acid hydrolysis (k1) with HCl are much smaller than decarboxylation rate constants (k2), indicating that hydrolysis is easier to occur than decarboxylation of gallic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.D. Wang, Nat. Gas Chem. Ind., 20, 38 (1995).
- W.M. Lee, US Patent 6276372 (2000).
- S. Kambourakis, K.M. Draths and J.W. Frost, J. Am. Chem. Soc., 122, 9042 (2000); doi:10.1021/ja000853r.
- H. Tang, A. Wang, S.O. Salley and K.Y.S. Ng, J. Am. Oil Chem. Soc., 85, 373 (2008); doi:10.1007/s11746-008-1208-z.
- J.H. Chen, Z.H. Zhang, Y.M. Wang, L.W. Bi, Z.S. Wu and D.M. Wu, Chem. Ind. Forest Prod., 15, 1 (1995).
- J. Yao, G.S. Guo, G.H. Ren and Y.H. Liu, J. Mol. Catal. B, 101, 137 (2014); doi:10.1016/j.molcatb.2013.11.018.
- J.A. Curiel, L. Betancor, B. Delasrivas, R. Munoz, J.M. Guisan and G. Fernandez-Lorente, J. Agric. Food Chem., 58, 6403 (2010); doi:10.1021/jf9044167.
- L.L. Lu, X.Y. Lu and N. Ma, J. Zhejiang Univ. Sci. B, 9, 401 (2008); doi:10.1631/jzus.B0730098.
- T. Oe, T. Iwamori, S. Kawasaki, A. Suzuki, H. Daimon and K. Fujie, Corrosion, 63, 793 (2007); doi:10.5006/1.3278428.
- G.X. Chen, D.D. Wang, J.M. Zhang, H.P. Huo and K.W. Xu, Physica B, 403, 3538 (2008); doi:10.1016/j.physb.2008.05.023.
- B.G. Yasnitskii, I.E. Korobeinikova, I.E. Kalashnikova and T.A. Bogun, Pharm. Chem. J., 23, 438 (1989); doi:10.1007/BF00758302.
- Y.J. Zhang, J. Fu, L. Liu and X.Y. Lu, Chem. React. Eng. Technol. (China), 29, 188 (2013).
- F. Yang, J. Fu, J. Mo and X.Y. Lu, Energy Fuels, 27, 6973 (2013); doi:10.1021/ef401560v.
References
Z.D. Wang, Nat. Gas Chem. Ind., 20, 38 (1995).
W.M. Lee, US Patent 6276372 (2000).
S. Kambourakis, K.M. Draths and J.W. Frost, J. Am. Chem. Soc., 122, 9042 (2000); doi:10.1021/ja000853r.
H. Tang, A. Wang, S.O. Salley and K.Y.S. Ng, J. Am. Oil Chem. Soc., 85, 373 (2008); doi:10.1007/s11746-008-1208-z.
J.H. Chen, Z.H. Zhang, Y.M. Wang, L.W. Bi, Z.S. Wu and D.M. Wu, Chem. Ind. Forest Prod., 15, 1 (1995).
J. Yao, G.S. Guo, G.H. Ren and Y.H. Liu, J. Mol. Catal. B, 101, 137 (2014); doi:10.1016/j.molcatb.2013.11.018.
J.A. Curiel, L. Betancor, B. Delasrivas, R. Munoz, J.M. Guisan and G. Fernandez-Lorente, J. Agric. Food Chem., 58, 6403 (2010); doi:10.1021/jf9044167.
L.L. Lu, X.Y. Lu and N. Ma, J. Zhejiang Univ. Sci. B, 9, 401 (2008); doi:10.1631/jzus.B0730098.
T. Oe, T. Iwamori, S. Kawasaki, A. Suzuki, H. Daimon and K. Fujie, Corrosion, 63, 793 (2007); doi:10.5006/1.3278428.
G.X. Chen, D.D. Wang, J.M. Zhang, H.P. Huo and K.W. Xu, Physica B, 403, 3538 (2008); doi:10.1016/j.physb.2008.05.023.
B.G. Yasnitskii, I.E. Korobeinikova, I.E. Kalashnikova and T.A. Bogun, Pharm. Chem. J., 23, 438 (1989); doi:10.1007/BF00758302.
Y.J. Zhang, J. Fu, L. Liu and X.Y. Lu, Chem. React. Eng. Technol. (China), 29, 188 (2013).
F. Yang, J. Fu, J. Mo and X.Y. Lu, Energy Fuels, 27, 6973 (2013); doi:10.1021/ef401560v.