Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic Study on Preparation of High-Purity Enriched Boric-10 Acid Used in Nuclear Power Plants
Corresponding Author(s) : Jiao Xu
Asian Journal of Chemistry,
Vol. 27 No. 9 (2015): Vol 27 Issue 9
Abstract
Although entiched boron-10 trifluoride had been industrialized, it can not be applied to nuclear industry or other fields directly. To take advantages of the superior features of boron-10 isotope, boron-10 trifluoride should be inverted into boric-10 acid (H310BO3). The study of reaction of boron trifluoride methanol complex with aqueous solution of lithium hydroxide is rare. In this paper, mechanism of the reaction was discussed as well as proper reaction conditions like reaction temperature, the mass of water and the ratio of reactants were determined. The kinetics of the system were examined using homogeneous kinetic models and was determined to be a pseudo-second-order homogeneous reaction control model. The activation energy was calculated to be 43.67 kJ/mol.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Huang, C. Hsiang, S.-C. Lee and G. Ting, Solvent Extr. Ion Exchange, 9, 319 (1991); doi:10.1080/07366299108918058.
- T.U. Probst, Fresenius J. Anal. Chem., 364, 391 (1999); doi:10.1007/s002160051356.
- S. Balci, N.A. Sezgi and E. Eren, Ind. Eng. Chem. Res., 51, 11091 (2012); doi:10.1021/ie300685x.
- F. Sevim, F. Demir, M. Bilen and H. Okur, Korean J. Chem. Eng., 23, 736 (2006); doi:10.1007/BF02705920.
- M. Musashi, T. Oi, M. Matsuo and M. Nomura, J. Chromatogr. A, 1201, 48 (2008); doi:10.1016/j.chroma.2008.06.004.
- H. Kakihana, M. Kotaka, S. Satoh, M. Nomura and M. Okamoto, J. Chem. Soc. Japan, 50, 158 (1977); doi:10.1246/bcsj.50.158.
- C.M. Wu, Chem. Ind., 29, 76 (2000).
- R.F. Barnes, H. Diamond, P.R. Fields, U.S. AEC, (1954).
- M. Han and W.J. Zhang, Chemical Eng., 35, 70 (2007).
- C.J. Rodden, US Patent 2789884 (1957).
- A.L. Fluesmeier, US Patent 3682590 (1972).
- H. Yan and X.S. Tang, X.-D. Gong, Z.-Y. Liu and M.-S. Shi, Acta Chim. Sin., 68, 2559 (2010).
- L.O. Gilpatrick, US Patent 3809762 (1974).
- H.C. Brown and P.A. Tierney, J. Am. Chem. Soc., 80, 1552 (1958); doi:10.1021/ja01540a011.
- N.N. Greenwood and R.L. Martin, Q. Rev. Chem. Soc., 8, 1 (1954); doi:10.1039/qr9540800001.
- C.A. Wamser, J. Am. Chem. Soc., 73, 409 (1951); doi:10.1021/ja01145a134.
References
H. Huang, C. Hsiang, S.-C. Lee and G. Ting, Solvent Extr. Ion Exchange, 9, 319 (1991); doi:10.1080/07366299108918058.
T.U. Probst, Fresenius J. Anal. Chem., 364, 391 (1999); doi:10.1007/s002160051356.
S. Balci, N.A. Sezgi and E. Eren, Ind. Eng. Chem. Res., 51, 11091 (2012); doi:10.1021/ie300685x.
F. Sevim, F. Demir, M. Bilen and H. Okur, Korean J. Chem. Eng., 23, 736 (2006); doi:10.1007/BF02705920.
M. Musashi, T. Oi, M. Matsuo and M. Nomura, J. Chromatogr. A, 1201, 48 (2008); doi:10.1016/j.chroma.2008.06.004.
H. Kakihana, M. Kotaka, S. Satoh, M. Nomura and M. Okamoto, J. Chem. Soc. Japan, 50, 158 (1977); doi:10.1246/bcsj.50.158.
C.M. Wu, Chem. Ind., 29, 76 (2000).
R.F. Barnes, H. Diamond, P.R. Fields, U.S. AEC, (1954).
M. Han and W.J. Zhang, Chemical Eng., 35, 70 (2007).
C.J. Rodden, US Patent 2789884 (1957).
A.L. Fluesmeier, US Patent 3682590 (1972).
H. Yan and X.S. Tang, X.-D. Gong, Z.-Y. Liu and M.-S. Shi, Acta Chim. Sin., 68, 2559 (2010).
L.O. Gilpatrick, US Patent 3809762 (1974).
H.C. Brown and P.A. Tierney, J. Am. Chem. Soc., 80, 1552 (1958); doi:10.1021/ja01540a011.
N.N. Greenwood and R.L. Martin, Q. Rev. Chem. Soc., 8, 1 (1954); doi:10.1039/qr9540800001.
C.A. Wamser, J. Am. Chem. Soc., 73, 409 (1951); doi:10.1021/ja01145a134.