Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Luminescent Properties of White Light-Emitting Single-Phased Phosphor ZnWO4:Eu3+
Corresponding Author(s) : Yong-Qing Zhai
Asian Journal of Chemistry,
Vol. 27 No. 9 (2015): Vol 27 Issue 9
Abstract
The white light-emitting ZnWO4:Eu3+ phosphors were synthesized by hydrothermal process followed by calcination at different temperatures. The phase structure, morphology and luminescent properties of the as-synthesized samples were characterized by X-ray diffraction, scanning electron microscope and fluorescence spectrophotometer. The results indicate that all the ZnWO4:Eu3+ phosphors are pure monoclinic structure. The ZnWO4:Eu3+ samples are spherical nanoparticles and the particle size significantly grows with increasing calcination temperature. The emission spectrum of ZnWO4:Eu3+ is composed of the broad band attributing to the intrinsic emission of WO42– and a series of sharp emission peaks originating from the characteristic emission of Eu3+. The luminescent intensities of the samples are gradually improved with the increase of calcination temperature. Moreover, all of the Zn1-xWO4:Eu3+x phosphors emit white light and the color coordinate of Zn0.98WO4:Eu3+0.02 phosphor is very close to the standard white chromaticity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.H. Ju, R.P. Wei, X.P. Gao, W.S. Liu and C.R. Pang, Opt. Mater., 33, 909 (2011); doi:10.1016/j.optmat.2011.01.025.
- K. Zhang, W.B. Hu, Y.T. Wu and H.Z. Liu, Ceram. Int., 35, 719 (2009); doi:10.1016/j.ceramint.2008.02.008.
- L.L. Li, L. Liu, W.W. Zi, H. Yu, S.C. Gan, G.J. Ji, H.F. Zou and X.C. Xu, J. Lumin., 143, 14 (2013); doi:10.1016/j.jlumin.2013.04.031.
- W.B. Ma, Z.P. Shi and R. Wang, J. Alloys Comp., 503, 118 (2010); doi:10.1016/j.jallcom.2010.04.213.
- S. Nishiura, S. Tanabe, K. Fujioka and Y. Fujimoto, Opt. Mater., 33, 688 (2011); doi:10.1016/j.optmat.2010.06.005.
- J.S. Liao, B. Qiu, H.R. Wen, Y. Li, R.J. Hong and H.Y. You, J. Mater. Sci., 46, 1184 (2011); doi:10.1007/s10853-010-4891-8.
- J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, G.C. Kim and T.W. Kim, Appl. Phys. Lett., 85, 3696 (2004); doi:10.1063/1.1808501.
- L. Chen, A.Q. Luo, Y. Zhang, F.Y. Liu, Y. Jiang, Q.S. Xu, X.H. Chen, Q.Z. Hu, S.F. Chen, K.J. Chen and H.C. Kuo, ACS Comb. Sci., 14, 636 (2012); doi:10.1021/co300058x.
- J. Li, X. Li, S.L. Hu, Y.C. Li and Y.Y. Hao, Opt. Mater., 35, 2309 (2013); doi:10.1016/j.optmat.2013.06.024.
- Z.J. Wang, P.L. Li, Q.L. Guo and Z.P. Yang, Mater. Res. Bull., 52, 30 (2014); doi:10.1016/j.materresbull.2014.01.005.
- W.Q. Yang, H.G. Liu, M. Gao, Y. Bai, J.T. Zhao, X.D. Xu, B. Wu, W.C. Zheng, G.K. Liu and Y. Lin, Acta Mater., 61, 5096 (2013); doi:10.1016/j.actamat.2013.03.036.
- T.T. Dong, Z.H. Li, Z.X. Ding, L. Wu, X.X. Wang and X.Z. Fu, Mater. Res. Bull., 43, 1694 (2008); doi:10.1016/j.materresbull.2007.07.020.
- B. Yan and F. Lei, J. Alloys Comp., 507, 460 (2010); doi:10.1016/j.jallcom.2010.07.203.
- Q.L. Dai, H.W. Song, X. Bai, G.H. Pan, S.Z. Lu, T. Wang, X.G. Ren and H.F. Zhao, J. Phys. Chem. C, 111, 7586 (2007); doi:10.1021/jp066712e.
- Y.Q. Zhai, Z.J. You, Y.H. Liu, Y.P. Sun and Q.Q. Ji, J. Rare Earths, 30, 114 (2012); doi:10.1016/S1002-0721(12)60005-2.
- Z.L. Wang, H.L. Li and J.H. Hao, J. Electrochem. Soc., 155, J152 (2008); doi:10.1149/1.2898898.
- F.-S. Wen, X. Zhao, H. Huo, J.-S. Chen, E. Shu-Lin and J.-H. Zhang, Mater. Lett., 55, 152 (2002); doi:10.1016/S0167-577X(01)00638-3.
- X.P. Chen, F. Xiao, S. Ye, X.Y. Huang, G.P. Dong and Q.Y. Zhang, J. Alloys Comp., 509, 1355 (2011); doi:10.1016/j.jallcom.2010.10.061.
References
Z.H. Ju, R.P. Wei, X.P. Gao, W.S. Liu and C.R. Pang, Opt. Mater., 33, 909 (2011); doi:10.1016/j.optmat.2011.01.025.
K. Zhang, W.B. Hu, Y.T. Wu and H.Z. Liu, Ceram. Int., 35, 719 (2009); doi:10.1016/j.ceramint.2008.02.008.
L.L. Li, L. Liu, W.W. Zi, H. Yu, S.C. Gan, G.J. Ji, H.F. Zou and X.C. Xu, J. Lumin., 143, 14 (2013); doi:10.1016/j.jlumin.2013.04.031.
W.B. Ma, Z.P. Shi and R. Wang, J. Alloys Comp., 503, 118 (2010); doi:10.1016/j.jallcom.2010.04.213.
S. Nishiura, S. Tanabe, K. Fujioka and Y. Fujimoto, Opt. Mater., 33, 688 (2011); doi:10.1016/j.optmat.2010.06.005.
J.S. Liao, B. Qiu, H.R. Wen, Y. Li, R.J. Hong and H.Y. You, J. Mater. Sci., 46, 1184 (2011); doi:10.1007/s10853-010-4891-8.
J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, G.C. Kim and T.W. Kim, Appl. Phys. Lett., 85, 3696 (2004); doi:10.1063/1.1808501.
L. Chen, A.Q. Luo, Y. Zhang, F.Y. Liu, Y. Jiang, Q.S. Xu, X.H. Chen, Q.Z. Hu, S.F. Chen, K.J. Chen and H.C. Kuo, ACS Comb. Sci., 14, 636 (2012); doi:10.1021/co300058x.
J. Li, X. Li, S.L. Hu, Y.C. Li and Y.Y. Hao, Opt. Mater., 35, 2309 (2013); doi:10.1016/j.optmat.2013.06.024.
Z.J. Wang, P.L. Li, Q.L. Guo and Z.P. Yang, Mater. Res. Bull., 52, 30 (2014); doi:10.1016/j.materresbull.2014.01.005.
W.Q. Yang, H.G. Liu, M. Gao, Y. Bai, J.T. Zhao, X.D. Xu, B. Wu, W.C. Zheng, G.K. Liu and Y. Lin, Acta Mater., 61, 5096 (2013); doi:10.1016/j.actamat.2013.03.036.
T.T. Dong, Z.H. Li, Z.X. Ding, L. Wu, X.X. Wang and X.Z. Fu, Mater. Res. Bull., 43, 1694 (2008); doi:10.1016/j.materresbull.2007.07.020.
B. Yan and F. Lei, J. Alloys Comp., 507, 460 (2010); doi:10.1016/j.jallcom.2010.07.203.
Q.L. Dai, H.W. Song, X. Bai, G.H. Pan, S.Z. Lu, T. Wang, X.G. Ren and H.F. Zhao, J. Phys. Chem. C, 111, 7586 (2007); doi:10.1021/jp066712e.
Y.Q. Zhai, Z.J. You, Y.H. Liu, Y.P. Sun and Q.Q. Ji, J. Rare Earths, 30, 114 (2012); doi:10.1016/S1002-0721(12)60005-2.
Z.L. Wang, H.L. Li and J.H. Hao, J. Electrochem. Soc., 155, J152 (2008); doi:10.1149/1.2898898.
F.-S. Wen, X. Zhao, H. Huo, J.-S. Chen, E. Shu-Lin and J.-H. Zhang, Mater. Lett., 55, 152 (2002); doi:10.1016/S0167-577X(01)00638-3.
X.P. Chen, F. Xiao, S. Ye, X.Y. Huang, G.P. Dong and Q.Y. Zhang, J. Alloys Comp., 509, 1355 (2011); doi:10.1016/j.jallcom.2010.10.061.