Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Molecularly Imprinted Polymer for the Removal of Melamine
Corresponding Author(s) : Showkat Ahmad Bhawani
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
In this article, molecularly imprinted polymer (MIP) of melamine was synthesized by non-covalent approach using microemulsion medium. In this study, melamine is used as a template molecule, acrylic acid as a functional monomer, N,N′-methylenebis(acrylamide) (MBAm) as a cross-linker and 2,2′-azobisisobutyronitrile (AIBN) as an initiator and microemulsion as a solvent. The produced polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and thermogravimetric analysis (TGA). The batch binding analysis was conducted for the evaluation of MIP and NIP rebinding efficiency with the melamine template. The adsorption studies including the adsorbent dosage of polymer, initial concentrations and pH of melamine solution were successfully carried out on both MIP and NIP. For selectivity test, 2,4,6-trichlorophenol was chosen as the competitive molecule against melamine template. A very good relative selectivity coefficient was achieved. The removal of melamine from different samples were conducted successfully by achieving a good removal efficiency in milk, river water and human blood serum 84.30, 94.26 and 93.32 %, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Puschner and R. Reimschuessel, Clin. Lab. Med., 31, 181 (2011); https://doi.org/10.1016/j.cll.2010.10.003.
- J. Cheng, X.O. Su, Y. Yao, C. Han, S. Wang and Y. Zhao, PLoS One, 11, e0154402 (2016);https://doi.org/10.1371/journal.pone.0154402.
- J. Dorne, D.R. Doerge, M. Vandenbroeck, J. Fink-Gremmels, W. Mennes, H.K. Knutsen, F. Vernazza, L. Castle, L. Edler and D. Benford, Toxicol. Appl. Pharmacol., 270, 218 (2013); https://doi.org/10.1016/j.taap.2012.01.012.
- C.M. Lok and R. Son, Int. Food Res. J., 16, 127 (2009).
- J.O. Mahony, K. Nolan, M.R. Smyth and B. Mizaikoff, Anal. Chim. Acta, 534, 31 (2004); https://doi.org/10.1016/j.aca.2004.07.043.
- K. Haupt, Anal. Chem., 75, 376A (2003); https://doi.org/10.1021/ac031385h.
- Y. Qi, Li. G, C. Wei, L. Zhao and B. Gong, J. Biomed. Sci., 5, 1 (2016).
- D.A. Spivak and K.J. Shea, Anal. Chim. Acta, 435, 65 (2001); https://doi.org/10.1016/S0003-2670(00)01333-7.
- G. Wulff and A. Sarhan, Angew. Chem. Int. Ed., 11, 341 (1972).
- R. Arshady and K. Mosbach, Macromol. Chem. Phys., 182, 687 (1981); https://doi.org/10.1002/macp.1981.021820240.
- M.J. Whitcombe, M.E. Rodriguez, P. Villar and E. Vulfson, J. Am. Chem. Soc., 117, 7105 (1995); https://doi.org/10.1021/ja00132a010.
- M. Khajeh, Z.S. Heidari and E. Sanchooli, Chem. Eng. J., 166, 1158 (2011); https://doi.org/10.1016/j.cej.2010.12.018.
- L. Chen, X. Wang, W. Lu, X. Wu and J. Li, Chem. Soc. Rev., 45, 2137 (2016); https://doi.org/10.1039/C6CS00061D.
- G. Dvorakova, R. Haschick, K. Chiad, M. Klapper, K. Müllen and A. Biffis, Macromol. Rapid Commun., 31, 2035 (2010); https://doi.org/10.1002/marc.201000406.
- K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode and L. Ye, Anal. Chim. Acta, 584, 112 (2007); https://doi.org/10.1016/j.aca.2006.11.004.
- B. Sellergren and K.J. Shea, J. Chromatogr. A, 635, 31 (1993); https://doi.org/10.1016/0021-9673(93)83112-6.
- M.M. Sanagi, S. Salleh, W.A.W. Ibrahim and A.A. Naim, Malaysian J. Fundam. Appl. Sci., 6, 27 (2010); https://doi.org/10.11113/mjfas.v6n1.171.
- G. Li and K.H. Row, Separ. Purif. Rev., 47, 1 (2018); https://doi.org/10.1080/15422119.2017.1315823.
- N. Arabzadeh and M. Abdouss, Colloid J., 72, 446 (2010); https://doi.org/10.1134/S1061933X10040022.
- L.M. Madikizela, S.S. Zunngu, N.Y. Mlunguza, N.T. Tavengwa, P.S. Mdluli and P.L. Chimuka, Water SA, 44, 406 (2018); https://doi.org/10.4314/wsa.v44i3.08.
- A.B. Dekhil, Y. Hannachi, A. Ghorbel and T. Boubaker, J. Environ. Sci. Technol., 4, 520 (2011); https://doi.org/10.3923/jest.2011.520.533.
- N. Kumar, N. Narayanan and S. Gupta, Food Chem., 255, 81 (2018); https://doi.org/10.1016/j.foodchem.2018.02.061.
- H.H. Yang, W.H. Zhou, X.C. Guo, H.Q. Chen, H.Q. Zhao, L.-M. Lin and X.-R. Wang, Talanta, 80, 821 (2009); https://doi.org/10.1016/j.talanta.2009.07.067.
- T.S. Anirudhan, P.L. Divya and J. Nima, React. Funct. Polym., 73, 1144 (2013); https://doi.org/10.1016/j.reactfunctpolym.2013.05.004.
- R.M. Roland and S.A. Bhawani, J. Anal. Methods Chem., 2016, Article ID 5671507 (2016); https://doi.org/10.1155/2016/5671507.
- N.B. Samarth, V. Kamble, P.A. Mahanwar, A.V. Rane and V.K. Abitha, Chem. Int., 1, 202 (2015).
References
B. Puschner and R. Reimschuessel, Clin. Lab. Med., 31, 181 (2011); https://doi.org/10.1016/j.cll.2010.10.003.
J. Cheng, X.O. Su, Y. Yao, C. Han, S. Wang and Y. Zhao, PLoS One, 11, e0154402 (2016);https://doi.org/10.1371/journal.pone.0154402.
J. Dorne, D.R. Doerge, M. Vandenbroeck, J. Fink-Gremmels, W. Mennes, H.K. Knutsen, F. Vernazza, L. Castle, L. Edler and D. Benford, Toxicol. Appl. Pharmacol., 270, 218 (2013); https://doi.org/10.1016/j.taap.2012.01.012.
C.M. Lok and R. Son, Int. Food Res. J., 16, 127 (2009).
J.O. Mahony, K. Nolan, M.R. Smyth and B. Mizaikoff, Anal. Chim. Acta, 534, 31 (2004); https://doi.org/10.1016/j.aca.2004.07.043.
K. Haupt, Anal. Chem., 75, 376A (2003); https://doi.org/10.1021/ac031385h.
Y. Qi, Li. G, C. Wei, L. Zhao and B. Gong, J. Biomed. Sci., 5, 1 (2016).
D.A. Spivak and K.J. Shea, Anal. Chim. Acta, 435, 65 (2001); https://doi.org/10.1016/S0003-2670(00)01333-7.
G. Wulff and A. Sarhan, Angew. Chem. Int. Ed., 11, 341 (1972).
R. Arshady and K. Mosbach, Macromol. Chem. Phys., 182, 687 (1981); https://doi.org/10.1002/macp.1981.021820240.
M.J. Whitcombe, M.E. Rodriguez, P. Villar and E. Vulfson, J. Am. Chem. Soc., 117, 7105 (1995); https://doi.org/10.1021/ja00132a010.
M. Khajeh, Z.S. Heidari and E. Sanchooli, Chem. Eng. J., 166, 1158 (2011); https://doi.org/10.1016/j.cej.2010.12.018.
L. Chen, X. Wang, W. Lu, X. Wu and J. Li, Chem. Soc. Rev., 45, 2137 (2016); https://doi.org/10.1039/C6CS00061D.
G. Dvorakova, R. Haschick, K. Chiad, M. Klapper, K. Müllen and A. Biffis, Macromol. Rapid Commun., 31, 2035 (2010); https://doi.org/10.1002/marc.201000406.
K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode and L. Ye, Anal. Chim. Acta, 584, 112 (2007); https://doi.org/10.1016/j.aca.2006.11.004.
B. Sellergren and K.J. Shea, J. Chromatogr. A, 635, 31 (1993); https://doi.org/10.1016/0021-9673(93)83112-6.
M.M. Sanagi, S. Salleh, W.A.W. Ibrahim and A.A. Naim, Malaysian J. Fundam. Appl. Sci., 6, 27 (2010); https://doi.org/10.11113/mjfas.v6n1.171.
G. Li and K.H. Row, Separ. Purif. Rev., 47, 1 (2018); https://doi.org/10.1080/15422119.2017.1315823.
N. Arabzadeh and M. Abdouss, Colloid J., 72, 446 (2010); https://doi.org/10.1134/S1061933X10040022.
L.M. Madikizela, S.S. Zunngu, N.Y. Mlunguza, N.T. Tavengwa, P.S. Mdluli and P.L. Chimuka, Water SA, 44, 406 (2018); https://doi.org/10.4314/wsa.v44i3.08.
A.B. Dekhil, Y. Hannachi, A. Ghorbel and T. Boubaker, J. Environ. Sci. Technol., 4, 520 (2011); https://doi.org/10.3923/jest.2011.520.533.
N. Kumar, N. Narayanan and S. Gupta, Food Chem., 255, 81 (2018); https://doi.org/10.1016/j.foodchem.2018.02.061.
H.H. Yang, W.H. Zhou, X.C. Guo, H.Q. Chen, H.Q. Zhao, L.-M. Lin and X.-R. Wang, Talanta, 80, 821 (2009); https://doi.org/10.1016/j.talanta.2009.07.067.
T.S. Anirudhan, P.L. Divya and J. Nima, React. Funct. Polym., 73, 1144 (2013); https://doi.org/10.1016/j.reactfunctpolym.2013.05.004.
R.M. Roland and S.A. Bhawani, J. Anal. Methods Chem., 2016, Article ID 5671507 (2016); https://doi.org/10.1155/2016/5671507.
N.B. Samarth, V. Kamble, P.A. Mahanwar, A.V. Rane and V.K. Abitha, Chem. Int., 1, 202 (2015).