Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Isomerization of Glucose into Fructose and Mannose in Presence of Anion-Exchanged Resins
Corresponding Author(s) : Peng Bai
Asian Journal of Chemistry,
Vol. 27 No. 8 (2015): Vol 27 Issue 8
Abstract
Much attention has been paid to the conversion of bio-regenerable glucose into valuable chemicals and liquid fuels, like fructose, 5-hydroxymethyl furfural (5-HMF), mannose and levulinic acid. The isomerization of glucose into fructose and mannose simultaneously was studied in the presence of commercial anion-exchanged resins. An OA16 (45) orthogonal experiment was designed investigating the following four variables i.e., resin types (factor A), reaction temperature (factor B), pH value (factor C) and D-glucose to resin ratio (factor D). Reaction temperature was identified as a prominent factor of this transformation. Ideal conversions and selectivities were obtained even in the case of high glucose concentration. In contrast to other catalysts reported like Tin-beta, anion-exchanged resins highlight by reasonable catalytic activity and selectivity under mild conditions, easy regeneration and separation and low cost. Further efforts were worthwhile in this area.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.J. Cleveland, Encyclopedia of Energy, Elsevier Academic Press, London, vol. 1 (2004).
- G.W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006); doi:10.1021/cr068360d.
- L.D. Schmidt and P.J. Dauenhauer, Nature, 447, 914 (2007); doi:10.1038/447914a.
- M. Benoit, A. Rodrigues, Q. Zhang, E. Fourré, K. De Oliveira Vigier, J.-M. Tatibouët and F. Jérôme, Angew. Chem., 123, 9126 (2011); doi:10.1002/ange.201104123.
- Y. Sun, J. Zhuang, L. Lin and P. Ouyang, Biotechnol. Adv., 27, 625 (2009); doi:10.1016/j.biotechadv.2009.04.023.
- D.J. MacLaurin and J.W. Green, Can. J. Chem., 47, 3947 (1969); doi:10.1139/v69-658.
- G.T. Ling, Y.Y. Wang and S.C. Tang, Handbook of Food Additives, Chemical Industry Press, Beijing, vol. 1, (1989).
- J. Kössi, J. Peltonen, T. Ekfors, J. Niinikoski and M. Laato, Eur. Surg. Res., 31, 74 (1999); doi:10.1159/000008623.
- R.F. Rest, C.F. Farrell and F.L. Naids, J. Leukoc. Biol., 43, 158 (1988).
- N.A. Ushakova, M.E. Probrazhenskaia, N.E. Nifant'ev, IaV. Voznyi, T.V. Pochechueva and B.V. Bovin, Vopr. Med. Khim., 47, 491 (2000)..
- M. Moliner, Y. Román-Leshkov and M.E. Davis, Proc. Natl. Acad. Sci. USA, 107, 6164 (2010); doi:10.1073/pnas.1002358107.
- Y. Román-Leshkov, J.N. Chheda and J.A. Dumesic, J. Sci., 312, 1933 (2006); doi:10.1126/science.1126337.
- K. Shimizu, R. Uozumi and A. Satsuma, Catal.Commun., 10, 1849 (2009); doi:10.1016/j.catcom.2009.06.012.
- J.-H. Chun and V.W. Pike, Chem. Commun., 48, 9921 (2012); doi:10.1039/c2cc35005j.
- G.M. Huang, J. Hainan Univ. (Nat. Sci.), 20, 327 (2002).
- J. Fang, Chem.World, 50, 279 (1981).
- G.H. Zhao, Contemp. Chem. Ind., 34, 40 (2005).
- Y. Watanabe, Y. Miyawaki, S. Adachi, K. Nakanishi and R. Matsuno, J. Mol. Catal. B, 10, 241 (2000); doi:10.1016/S1381-1177(00)00134-X.
- S.H. Bhosale, M.B. Rao and V.V. Deshpande, Microbiol. Rev., 60, 280 (1996).
- E. Haack, F. Braun and K. Kohler, US Patent 3256270 (1966).
- J.F. Mendicino, J. Am. Chem. Soc., 82, 4975 (1960); doi:10.1021/ja01503a055.
- C. Moreau, R. Durand, A. Roux and D. Tichit, Appl. Catal. A, 193, 257 (2000); doi:10.1016/S0926-860X(99)00435-4.
- J. Rendleman Jr. and J.E. Hodge, Carbohydr. Res., 75, 83 (1979); doi:10.1016/S0008-6215(00)84629-7.
- J.A.W.M. Beenackers, B.F.M. Kuster and H.S. van der Baan, Appl. Catal., 16, 75 (1985); doi:10.1016/S0166-9834(00)84071-3.
- A. Chakrabarti and M.M. Sharma, React. Funct. Polym., 20, 1 (1993); doi:10.1016/0923-1137(93)90064-M.
- A. Converti, A. Fisichella, A. Riscolo, M. Del Borghi, A. Scaringi and D. Carbone, Biotechnol. Techniq., 11, 99 (1997); doi:10.1023/A:1018420623190.
- Y. Zhang, K. Hidajat and A.K. Ray, Biochem. Eng. J., 21, 111 (2004); doi:10.1016/j.bej.2004.05.007.
- J. Lecomte, A. Finiels and C. Moreau, Starke, 54, 75 (2002); doi:10.1002/1521-379X(200202)54:2<75::AID-STAR75>3.0.CO;2-F.
- X. Wu and D.Y.C. Leung, Appl. Energy, 88, 3615 (2011); doi:10.1016/j.apenergy.2011.04.041.
References
C.J. Cleveland, Encyclopedia of Energy, Elsevier Academic Press, London, vol. 1 (2004).
G.W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006); doi:10.1021/cr068360d.
L.D. Schmidt and P.J. Dauenhauer, Nature, 447, 914 (2007); doi:10.1038/447914a.
M. Benoit, A. Rodrigues, Q. Zhang, E. Fourré, K. De Oliveira Vigier, J.-M. Tatibouët and F. Jérôme, Angew. Chem., 123, 9126 (2011); doi:10.1002/ange.201104123.
Y. Sun, J. Zhuang, L. Lin and P. Ouyang, Biotechnol. Adv., 27, 625 (2009); doi:10.1016/j.biotechadv.2009.04.023.
D.J. MacLaurin and J.W. Green, Can. J. Chem., 47, 3947 (1969); doi:10.1139/v69-658.
G.T. Ling, Y.Y. Wang and S.C. Tang, Handbook of Food Additives, Chemical Industry Press, Beijing, vol. 1, (1989).
J. Kössi, J. Peltonen, T. Ekfors, J. Niinikoski and M. Laato, Eur. Surg. Res., 31, 74 (1999); doi:10.1159/000008623.
R.F. Rest, C.F. Farrell and F.L. Naids, J. Leukoc. Biol., 43, 158 (1988).
N.A. Ushakova, M.E. Probrazhenskaia, N.E. Nifant'ev, IaV. Voznyi, T.V. Pochechueva and B.V. Bovin, Vopr. Med. Khim., 47, 491 (2000)..
M. Moliner, Y. Román-Leshkov and M.E. Davis, Proc. Natl. Acad. Sci. USA, 107, 6164 (2010); doi:10.1073/pnas.1002358107.
Y. Román-Leshkov, J.N. Chheda and J.A. Dumesic, J. Sci., 312, 1933 (2006); doi:10.1126/science.1126337.
K. Shimizu, R. Uozumi and A. Satsuma, Catal.Commun., 10, 1849 (2009); doi:10.1016/j.catcom.2009.06.012.
J.-H. Chun and V.W. Pike, Chem. Commun., 48, 9921 (2012); doi:10.1039/c2cc35005j.
G.M. Huang, J. Hainan Univ. (Nat. Sci.), 20, 327 (2002).
J. Fang, Chem.World, 50, 279 (1981).
G.H. Zhao, Contemp. Chem. Ind., 34, 40 (2005).
Y. Watanabe, Y. Miyawaki, S. Adachi, K. Nakanishi and R. Matsuno, J. Mol. Catal. B, 10, 241 (2000); doi:10.1016/S1381-1177(00)00134-X.
S.H. Bhosale, M.B. Rao and V.V. Deshpande, Microbiol. Rev., 60, 280 (1996).
E. Haack, F. Braun and K. Kohler, US Patent 3256270 (1966).
J.F. Mendicino, J. Am. Chem. Soc., 82, 4975 (1960); doi:10.1021/ja01503a055.
C. Moreau, R. Durand, A. Roux and D. Tichit, Appl. Catal. A, 193, 257 (2000); doi:10.1016/S0926-860X(99)00435-4.
J. Rendleman Jr. and J.E. Hodge, Carbohydr. Res., 75, 83 (1979); doi:10.1016/S0008-6215(00)84629-7.
J.A.W.M. Beenackers, B.F.M. Kuster and H.S. van der Baan, Appl. Catal., 16, 75 (1985); doi:10.1016/S0166-9834(00)84071-3.
A. Chakrabarti and M.M. Sharma, React. Funct. Polym., 20, 1 (1993); doi:10.1016/0923-1137(93)90064-M.
A. Converti, A. Fisichella, A. Riscolo, M. Del Borghi, A. Scaringi and D. Carbone, Biotechnol. Techniq., 11, 99 (1997); doi:10.1023/A:1018420623190.
Y. Zhang, K. Hidajat and A.K. Ray, Biochem. Eng. J., 21, 111 (2004); doi:10.1016/j.bej.2004.05.007.
J. Lecomte, A. Finiels and C. Moreau, Starke, 54, 75 (2002); doi:10.1002/1521-379X(200202)54:2<75::AID-STAR75>3.0.CO;2-F.
X. Wu and D.Y.C. Leung, Appl. Energy, 88, 3615 (2011); doi:10.1016/j.apenergy.2011.04.041.