Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Octanol/Water Partition Coefficients of Pyridinium-Based Ionic Liquids
Corresponding Author(s) : Yaquan Wang
Asian Journal of Chemistry,
Vol. 27 No. 8 (2015): Vol 27 Issue 8
Abstract
Nine pyridinium-based ionic liquids were synthesised, which include 1-butylpyridinium bromide ([BPYR] [Br]), 1-hexylpyridinium bromide ([HPYR][Br]), 1-octylpyridinium bromide ([OPYR][Br]), 1-hexylpyridinium bis(trifluoromethylsulfonyl)imide ([HPYR] [NTf2]), 1-octylpyridinium bis(trifluoromethylsulfonyl)imide ([OPYR][NTf2]), 1-hexylpyridinium trifluoromethanesulfonate ([HPYR] [TFO]), 1-octylpyridinium trifluoromethanesulfonate ([OPYR][TFO]), 1-hexylpyridinium tetrafluoroborate ([HPYR] [BF4]), 1-octylpyridinium tetrafluoroborate ([OPYR][BF4]). The octanol/water partition coefficients (KOWs) of these pyridinium-based ionic liquids were determined by shake-flask method. It is found that the pyridinium-based ionic liquids measured in this work are extremely hydrophilic except for [OPYR] [NTf2]. It is also found that KOWs of [NTf2] ionic liquids were dependent on the concentration and high ionic liquids concentration in water leads to big KOW.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Zhao, E. Zhao, P. Shen, M. Zhao and J. Sun, Ultrason. Sonochem., 15, 955 (2008); doi:10.1016/j.ultsonch.2008.02.011.
- Y. Xiao and S.V. Malhotra, Tetrahedron Asymm., 17, 1062 (2006); doi:10.1016/j.tetasy.2006.03.032.
- B. Ni, Q. Zhang and A.D. Headley, Tetrahedron Lett., 49, 1249 (2008); doi:10.1016/j.tetlet.2007.12.024.
- D. Zhao, Z. Fei, T.J. Geldbach, R. Scopelliti and P.J. Dyson, J. Am. Chem. Soc., 126, 15876 (2004); doi:10.1021/ja0463482.
- F.G. Deng, B. Hu, W. Sun, J. Chen and C.G. Xia, Dalton Trans., 38, 4262 (2007); doi:10.1039/b709800f.
- D. Zhao, Y. Wang, E. Duan and J. Zhang, Fuel Process. Technol., 91, 1803 (2010); doi:10.1016/j.fuproc.2010.08.001.
- Y. Wang, L. Hao, C. Xiong, D. Xu and W. Chen, J. Fuel Chem. Technol., 35, 513 (2007); doi:10.1016/S1872-5813(07)60031-0.
- A. Arce, M. Francisco and A. Soto, J. Chem. Thermodyn., 42, 712 (2010); doi:10.1016/j.jct.2010.01.005.
- Y. Xiao and S.V. Malhotra, Tetrahedron Lett., 45, 8339 (2004); doi:10.1016/j.tetlet.2004.09.070.
- Y. Xiao and S.V. Malhotra, J. Organomet. Chem., 690, 3609 (2005); doi:10.1016/j.jorganchem.2005.04.047.
- L. Mayrand-Provencher, S. Lin, D. Lazzerini and D. Rochefort, J. Power Sources, 195, 5114 (2010); doi:10.1016/j.jpowsour.2010.02.073.
- L. Ropel, L.S. Belveze, S.N.V.K. Aki, M.A. Stadtherr and J.F. Brennecke, Green Chem., 7, 83 (2005); doi:10.1039/b410891d.
- S.H. Lee and S.B. Lee, J. Chem. Technol. Biotechnol., 84, 202 (2009); doi:10.1002/jctb.2025.
- A. Chapeaux, L.D. Simoni, M.A. Stadtherr and J.F. Brennecke, J. Chem. Eng. Data, 52, 2462 (2007); doi:10.1021/je7003935.
- A.P. de los Ríos, F.J. Hernández-Fernández, F. Tomás-Alonso, M. Rubio, D. Gómez and G. Víllora, J. Membr. Sci., 307, 233 (2008); doi:10.1016/j.memsci.2007.09.020.
- N. Papaiconomou, J. Salminen, J.M. Lee and J.M. Prausnitz, J. Chem. Eng. Data, 52, 833 (2007); doi:10.1021/je060440r.
- N. Papaiconomou, N. Yakelis, J. Salminen, R. Bergman and J.M. Prausnitz, J. Chem. Eng. Data, 51, 1389 (2006); doi:10.1021/je060096y.
- Y. Qiao, S. Xia and P. Ma, J. Chem. Eng. Data, 53, 280 (2008); doi:10.1021/je700381u.
- A. Apelblat, Ber. Bunsenges. Phys. Chem., 87, 2 (1983); doi:10.1002/bbpc.19830870104.
- Y. Marcus, J. Solution Chem., 19, 507 (1990); doi:10.1007/BF00650383.
References
S. Zhao, E. Zhao, P. Shen, M. Zhao and J. Sun, Ultrason. Sonochem., 15, 955 (2008); doi:10.1016/j.ultsonch.2008.02.011.
Y. Xiao and S.V. Malhotra, Tetrahedron Asymm., 17, 1062 (2006); doi:10.1016/j.tetasy.2006.03.032.
B. Ni, Q. Zhang and A.D. Headley, Tetrahedron Lett., 49, 1249 (2008); doi:10.1016/j.tetlet.2007.12.024.
D. Zhao, Z. Fei, T.J. Geldbach, R. Scopelliti and P.J. Dyson, J. Am. Chem. Soc., 126, 15876 (2004); doi:10.1021/ja0463482.
F.G. Deng, B. Hu, W. Sun, J. Chen and C.G. Xia, Dalton Trans., 38, 4262 (2007); doi:10.1039/b709800f.
D. Zhao, Y. Wang, E. Duan and J. Zhang, Fuel Process. Technol., 91, 1803 (2010); doi:10.1016/j.fuproc.2010.08.001.
Y. Wang, L. Hao, C. Xiong, D. Xu and W. Chen, J. Fuel Chem. Technol., 35, 513 (2007); doi:10.1016/S1872-5813(07)60031-0.
A. Arce, M. Francisco and A. Soto, J. Chem. Thermodyn., 42, 712 (2010); doi:10.1016/j.jct.2010.01.005.
Y. Xiao and S.V. Malhotra, Tetrahedron Lett., 45, 8339 (2004); doi:10.1016/j.tetlet.2004.09.070.
Y. Xiao and S.V. Malhotra, J. Organomet. Chem., 690, 3609 (2005); doi:10.1016/j.jorganchem.2005.04.047.
L. Mayrand-Provencher, S. Lin, D. Lazzerini and D. Rochefort, J. Power Sources, 195, 5114 (2010); doi:10.1016/j.jpowsour.2010.02.073.
L. Ropel, L.S. Belveze, S.N.V.K. Aki, M.A. Stadtherr and J.F. Brennecke, Green Chem., 7, 83 (2005); doi:10.1039/b410891d.
S.H. Lee and S.B. Lee, J. Chem. Technol. Biotechnol., 84, 202 (2009); doi:10.1002/jctb.2025.
A. Chapeaux, L.D. Simoni, M.A. Stadtherr and J.F. Brennecke, J. Chem. Eng. Data, 52, 2462 (2007); doi:10.1021/je7003935.
A.P. de los Ríos, F.J. Hernández-Fernández, F. Tomás-Alonso, M. Rubio, D. Gómez and G. Víllora, J. Membr. Sci., 307, 233 (2008); doi:10.1016/j.memsci.2007.09.020.
N. Papaiconomou, J. Salminen, J.M. Lee and J.M. Prausnitz, J. Chem. Eng. Data, 52, 833 (2007); doi:10.1021/je060440r.
N. Papaiconomou, N. Yakelis, J. Salminen, R. Bergman and J.M. Prausnitz, J. Chem. Eng. Data, 51, 1389 (2006); doi:10.1021/je060096y.
Y. Qiao, S. Xia and P. Ma, J. Chem. Eng. Data, 53, 280 (2008); doi:10.1021/je700381u.
A. Apelblat, Ber. Bunsenges. Phys. Chem., 87, 2 (1983); doi:10.1002/bbpc.19830870104.
Y. Marcus, J. Solution Chem., 19, 507 (1990); doi:10.1007/BF00650383.