Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Crystal Structure and Switchable Dielectric Properties of Singly Protonated Homopiperazinium Perchlorate
Corresponding Author(s) : Yan Sui
Asian Journal of Chemistry,
Vol. 27 No. 8 (2015): Vol 27 Issue 8
Abstract
Singly protonated homopiperazinium perchlorate (1) has been synthesized and characterized by single-crystal X-ray diffraction, IR, elemental analysis, DSC and temperature-dependent dielectric analysis. Compound 1 crystallizes in orthorhombic space group Pbca, their homopiperazinium cations are arranged in almost identical orientation by the parallel and nearly ideal linear N-H···N hydrogen bond chains. Very large dielectric change between high and low dielectric states is found at about 400 K due to reversible first-order phase transition. It is the first time that singly protonated homopiperazinium perchlorate is found to be a switchable dielectric material with high phase transition temperature and large dielectric change between high and low dielectric states.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Wuttig and N. Yamada, Nat. Mater., 6, 824 (2007); doi:10.1038/nmat2009.
- M. Salinga and M. Wuttig, Science, 332, 543 (2011); doi:10.1126/science.1204093.
- W. Zhang, H.-Y. Ye, R. Graf, H.W. Spiess, Y.-F. Yao, R.-Q. Zhu and R.-G. Xiong, J. Am. Chem. Soc., 135, 5230 (2013); doi:10.1021/ja3110335.
- M.A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA, 102, 10771 (2005); doi:10.1073/pnas.0502816102.
- E.R. Kay, D.A. Leigh and F. Zerbetto, Angew. Chem. Int. Ed., 46, 72 (2007); doi:10.1002/anie.200504313.
- T.C. Bedard and J.S. Moore, J. Am. Chem. Soc., 117, 10662 (1995); doi:10.1021/ja00148a008.
- N. Hoshino, T. Takeda and T. Akutagawa, RSC Adv., 4, 743 (2013); doi:10.1039/c3ra44515a.
- T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. Noro, H. Takahashi, R. Kumai, Y. Tokura and T. Nakamura, Nat. Mater., 8, 342 (2009); doi:10.1038/nmat2377.
- C.S. Vogelsberg and M.A. Garcia-Garibay, Chem. Soc. Rev., 41, 1892 (2012); doi:10.1039/c1cs15197e.
- Z.-H. Sun, J.-H. Luo, T.-L. Chen, L.-N. Li, R.-G. Xiong, M.-L. Tong and M.-C. Hong, Adv. Funct. Mater., 22, 4855 (2012); doi:10.1002/adfm.201201770.
- Y. Du, H.-M. Hao, Q.-C. Zhang, H.-X. Zhao, L.-S. Long, R.-B. Huang and L.-S. Zheng, Sci. China Chem., 56, 917 (2013); doi:10.1007/s11426-012-4820-6.
- V. Serreli, C.F. Lee, E.R. Kay and D.A. Leigh, Nature, 445, 523 (2007); doi:10.1038/nature05452.
- S.P. Fletcher, F. Dumur, M.M. Pollard and B.L. Feringa, Science, 310, 80 (2005); doi:10.1126/science.1117090.
- M. Szafranski, A. Katrusiak and G.J. McIntyre, Phys. Rev. Lett., 89, 215507 (2002); doi:10.1103/PhysRevLett.89.215507.
- A. Katrusiak, J. Mol. Struct., 552, 159 (2000); doi:10.1016/S0022-2860(00)00475-0.
- A. Katrusiak and M. Szafranski, Phys. Rev. Lett., 82, 576 (1999); doi:10.1103/PhysRevLett.82.576.
- M. Wojtas, A. Gagor, O. Czupinski, W. Medycki and R. Jakubas, J. Solid State Chem., 187, 35 (2012); doi:10.1016/j.jssc.2011.12.020.
- R. Pepinsky, K. Vedam, Y. Okaya and S. Hoshino, Phys. Rev., 111, 1467 (1958); doi:10.1103/PhysRev.111.1467.
- W. Zhang and R.-G. Xiong, Chem. Rev., 112, 1163 (2012); doi:10.1021/cr200174w.
- W. Zhang, Y. Cai, R.-G. Xiong, H. Yoshikawa and K. Awaga, Angew. Chem. Int. Ed., 49, 6608 (2010); doi:10.1002/anie.201001208.
- H.-B. Cui, K. Takahashi, Y. Okano, H. Kobayashi, Z.-M. Wang and A. Kobayashi, Angew. Chem. Int. Ed., 44, 6508 (2005); doi:10.1002/anie.200501867.
- W. Zhang and R.J. Xu, Sci. China Chem., 55, 201 (2012); doi:10.1007/s11426-011-4401-0.
References
M. Wuttig and N. Yamada, Nat. Mater., 6, 824 (2007); doi:10.1038/nmat2009.
M. Salinga and M. Wuttig, Science, 332, 543 (2011); doi:10.1126/science.1204093.
W. Zhang, H.-Y. Ye, R. Graf, H.W. Spiess, Y.-F. Yao, R.-Q. Zhu and R.-G. Xiong, J. Am. Chem. Soc., 135, 5230 (2013); doi:10.1021/ja3110335.
M.A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA, 102, 10771 (2005); doi:10.1073/pnas.0502816102.
E.R. Kay, D.A. Leigh and F. Zerbetto, Angew. Chem. Int. Ed., 46, 72 (2007); doi:10.1002/anie.200504313.
T.C. Bedard and J.S. Moore, J. Am. Chem. Soc., 117, 10662 (1995); doi:10.1021/ja00148a008.
N. Hoshino, T. Takeda and T. Akutagawa, RSC Adv., 4, 743 (2013); doi:10.1039/c3ra44515a.
T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. Noro, H. Takahashi, R. Kumai, Y. Tokura and T. Nakamura, Nat. Mater., 8, 342 (2009); doi:10.1038/nmat2377.
C.S. Vogelsberg and M.A. Garcia-Garibay, Chem. Soc. Rev., 41, 1892 (2012); doi:10.1039/c1cs15197e.
Z.-H. Sun, J.-H. Luo, T.-L. Chen, L.-N. Li, R.-G. Xiong, M.-L. Tong and M.-C. Hong, Adv. Funct. Mater., 22, 4855 (2012); doi:10.1002/adfm.201201770.
Y. Du, H.-M. Hao, Q.-C. Zhang, H.-X. Zhao, L.-S. Long, R.-B. Huang and L.-S. Zheng, Sci. China Chem., 56, 917 (2013); doi:10.1007/s11426-012-4820-6.
V. Serreli, C.F. Lee, E.R. Kay and D.A. Leigh, Nature, 445, 523 (2007); doi:10.1038/nature05452.
S.P. Fletcher, F. Dumur, M.M. Pollard and B.L. Feringa, Science, 310, 80 (2005); doi:10.1126/science.1117090.
M. Szafranski, A. Katrusiak and G.J. McIntyre, Phys. Rev. Lett., 89, 215507 (2002); doi:10.1103/PhysRevLett.89.215507.
A. Katrusiak, J. Mol. Struct., 552, 159 (2000); doi:10.1016/S0022-2860(00)00475-0.
A. Katrusiak and M. Szafranski, Phys. Rev. Lett., 82, 576 (1999); doi:10.1103/PhysRevLett.82.576.
M. Wojtas, A. Gagor, O. Czupinski, W. Medycki and R. Jakubas, J. Solid State Chem., 187, 35 (2012); doi:10.1016/j.jssc.2011.12.020.
R. Pepinsky, K. Vedam, Y. Okaya and S. Hoshino, Phys. Rev., 111, 1467 (1958); doi:10.1103/PhysRev.111.1467.
W. Zhang and R.-G. Xiong, Chem. Rev., 112, 1163 (2012); doi:10.1021/cr200174w.
W. Zhang, Y. Cai, R.-G. Xiong, H. Yoshikawa and K. Awaga, Angew. Chem. Int. Ed., 49, 6608 (2010); doi:10.1002/anie.201001208.
H.-B. Cui, K. Takahashi, Y. Okano, H. Kobayashi, Z.-M. Wang and A. Kobayashi, Angew. Chem. Int. Ed., 44, 6508 (2005); doi:10.1002/anie.200501867.
W. Zhang and R.J. Xu, Sci. China Chem., 55, 201 (2012); doi:10.1007/s11426-011-4401-0.