Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of 2-Ethylhexyl Acetate by Transesterification of Methyl Acetate with 2-Ethylhexanol
Corresponding Author(s) : Shaoyin Zhang
Asian Journal of Chemistry,
Vol. 27 No. 8 (2015): Vol 27 Issue 8
Abstract
In order to explore a new application field of methyl acetate which is of limited industrial importance, one of the possibilities to obtain the desired products would be the transesterification of methyl acetate with 2-ethylhexanol. The choice of catalyst and the determination of the best experimental conditions for the transesterification were investigated in this paper. Strongly acidic cation-exchange resin NKC-9 was chose as the catalyst in this reaction. The reaction time, the effects of the reaction temperature, the catalyst loading and the molar ratio of methyl acetate to 2-ethylhexyl acetate on the conversion of 2-ethylhexyl acetate were discussed. This paper describes an optimization study on the transesterification reaction based on nine well-planned orthogonal experiments. The maximum conversion of 2-ethylhexanol was found at a NKC-9 catalyst loading of 20 wt. %, a molar ratio of methyl acetate to 2-ethylhexanol of 4:1, a reactive time of 3 h and a reaction temperature of 80 °C. The product yield and the conversion of 2-ethylhexanol under optimal conditions reached 90.90 and 79.64 %, respectively. The structure of the product 2-2-ethylhexyl acetate acetate has been conformed by IR and 1H NMR.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Bozek-Winkler and J. Gmehling, Ind. Eng. Chem. Res., 45, 6648 (2006); doi:10.1021/ie060536e.
- E. Sert and F.S. Atalay, Ind. Eng. Chem. Res., 51, 6350 (2012); doi:10.1021/ie300350r.
- P. Patidar and S. Mahajani, Ind. Eng. Chem. Res., 51, 8748 (2012); doi:10.1021/ie2016027.
- B. Xu, W. Zhang, X. Zhang and C. Zhou, Int. J. Chem. Kinet., 41, 101 (2009); doi:10.1002/kin.20378.
- X. Cui, J. Cai, Y. Zhang, R. Li and T. Feng, Ind. Eng. Chem. Res., 50, 11521 (2011); doi:10.1021/ie2000715.
- G. Morales, M. Paniagua, J.A. Melero, G. Vicente and C. Ochoa, Ind. Eng. Chem. Res., 50, 5898 (2011); doi:10.1021/ie102357c.
- V.C. Gyani and S. Mahajani, Sep. Sci. Technol., 43, 2245 (2008); doi:10.1080/01496390802118871.
References
E. Bozek-Winkler and J. Gmehling, Ind. Eng. Chem. Res., 45, 6648 (2006); doi:10.1021/ie060536e.
E. Sert and F.S. Atalay, Ind. Eng. Chem. Res., 51, 6350 (2012); doi:10.1021/ie300350r.
P. Patidar and S. Mahajani, Ind. Eng. Chem. Res., 51, 8748 (2012); doi:10.1021/ie2016027.
B. Xu, W. Zhang, X. Zhang and C. Zhou, Int. J. Chem. Kinet., 41, 101 (2009); doi:10.1002/kin.20378.
X. Cui, J. Cai, Y. Zhang, R. Li and T. Feng, Ind. Eng. Chem. Res., 50, 11521 (2011); doi:10.1021/ie2000715.
G. Morales, M. Paniagua, J.A. Melero, G. Vicente and C. Ochoa, Ind. Eng. Chem. Res., 50, 5898 (2011); doi:10.1021/ie102357c.
V.C. Gyani and S. Mahajani, Sep. Sci. Technol., 43, 2245 (2008); doi:10.1080/01496390802118871.